Childhood Growth Hormone Deficiency and Hypopituitarism

  • Carmen L. Soto-Rivera
  • Christopher J. Romero
  • Laurie E. Cohen


Hypopituitarism is the deficiency in varying degrees of one or multiple pituitary hormones. In this chapter, deficiency of growth hormone (GH) will be discussed, while other hormonal deficiencies are presented elsewhere in this book. To understand GH deficiency (GHD), the mechanisms of GH production and its secretion are first presented. There are multiple etiologies of GHD, and an ever-increasing number of genetic causes have been uncovered. However, the ability to make the diagnosis of GHD still remains difficult, and interpretation of laboratory studies remains controversial.


Bone age Growth hormone Growth hormone-releasing hormone Hypopituitarism Insulin-like growth factor-I Pituitary Short stature Somatotropin release-inhibiting factor (somatostatin) Transcription factor 


  1. 1.
    Asa SL, et al. The transcription activator steroidogenic factor-1 is preferentially expressed in the human pituitary gonadotroph. J Clin Endocrinol Metab. 1996;81(6):2165–70.PubMedGoogle Scholar
  2. 2.
    Dutour A. A new step understood in the cascade of tissue-specific regulators orchestrating pituitary lineage determination: the Prophet of Pit-1 (Prop-1). Eur J Endocrinol. 1997;137(6):616–7.PubMedCrossRefGoogle Scholar
  3. 3.
    Rosenfeld RG. Disorders of growth hormone and insulin-like growth factor secretion and action. In: Sperling MA, editor. Pediatric endocrinology. Philadelphia: W.B. Saunders; 1996. p. 117–69.Google Scholar
  4. 4.
    Reichlin S. Neuroendocrinology. In: Wilson JD, Foster DW, editors. Williams textbook of endocrinology. Philadelphia: W.B. Saunders; 1991. p. 1079–138.Google Scholar
  5. 5.
    Gorczyca W, Hardy J. Arterial supply of the human anterior pituitary gland. Neurosurgery. 1987;20(3):369–78.PubMedCrossRefGoogle Scholar
  6. 6.
    Blethen SL. Hypopituitarism. In: Lifshitz F, editor. Pediatric endocrinology. New York: Marcel Dekker Inc; 1996. p. 19–31.Google Scholar
  7. 7.
    Backeljauw PHV. Growth hormone physiology. In: Cohen LE, editor. Growth hormone deficiency, physiology and clinical management. Cham: Springer International Publishing; 2016. p. 7–20.CrossRefGoogle Scholar
  8. 8.
    DeNoto FM, Moore DD, Goodman HM. Human growth hormone DNA sequence and mRNA structure: possible alternative splicing. Nucl Acids Res. 1981;9(15):3719–30.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Cooke NE, et al. Human growth hormone gene and the highly homologous growth hormone variant gene display different splicing patterns. J Clin Invest. 1988;82(1):270–5.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Baumann G, et al. A specific growth hormone-binding protein in human plasma: initial characterization. J Clin Endocrinol Metab. 1986;62(1):134–41.PubMedCrossRefGoogle Scholar
  11. 11.
    Chen EY, et al. The human growth hormone locus: nucleotide sequence, biology, and evolution. Genomics. 1989;4(4):479–97.PubMedCrossRefGoogle Scholar
  12. 12.
    Nielsen PV, Pedersen H, Kampmann EM. Absence of human placental lactogen in an otherwise uneventful pregnancy. Am J Obstet Gynecol. 1979;135(3):322–6.PubMedCrossRefGoogle Scholar
  13. 13.
    Frankenne F, et al. Identification of placental human growth hormone as the growth hormone-V gene expression product. J Clin Endocrinol Metab. 1990;71(1):15–8.PubMedCrossRefGoogle Scholar
  14. 14.
    de Zegher F, et al. Perinatal growth hormone (GH) physiology: effect of GH-releasing factor on maternal and fetal secretion of pituitary and placental GH. J Clin Endocrinol Metab. 1990;71(2):520–2.PubMedCrossRefGoogle Scholar
  15. 15.
    Mayo KE. Molecular cloning and expression of a pituitary-specific receptor for growth hormone-releasing hormone. Mol Endocrinol. 1992;6(10):1734–44.PubMedGoogle Scholar
  16. 16.
    Chen C, Clarke IJ. Modulation of Ca2+ influx in the ovine somatotroph by growth hormone-releasing factor. Am J Phys. 1995;268(2 Pt 1):E204–12.Google Scholar
  17. 17.
    Mayo KE, et al. Growth hormone-releasing hormone: synthesis and signaling. Recent Prog Horm Res. 1995;50:35–73.PubMedGoogle Scholar
  18. 18.
    Barinaga M, et al. Transcriptional regulation of growth hormone gene expression by growth hormone-releasing factor. Nature. 1983;306(5938):84–5.PubMedCrossRefGoogle Scholar
  19. 19.
    Bilezikjian LM, Vale WW. Stimulation of adenosine 3′,5′-monophosphate production by growth hormone-releasing factor and its inhibition by somatostatin in anterior pituitary cells in vitro. Endocrinology. 1983;113(5):1726–31.PubMedCrossRefGoogle Scholar
  20. 20.
    Cohen LE, et al. CREB-independent regulation by CBP is a novel mechanism of human growth hormone gene expression. J Clin Invest. 1999;104(8):1123–30.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Law SF, Manning D, Reisine T. Identification of the subunits of GTP-binding proteins coupled to somatostatin receptors. J Biol Chem. 1991;266(27):17885–97.PubMedGoogle Scholar
  22. 22.
    Law SF, et al. Gi alpha 3 and G(o) alpha selectively associate with the cloned somatostatin receptor subtype SSTR2. J Biol Chem. 1993;268(15):10721–7.PubMedGoogle Scholar
  23. 23.
    Fujii Y, et al. Somatostatin receptor subtype SSTR2 mediates the inhibition of high voltage activated calcium channels by somatostatin and its analogue SMS. FEBS Lett. 1996;355:117–20.CrossRefGoogle Scholar
  24. 24.
    Tannenbaum GS, Ling N. Evidence for autoregulation of growth hormone secretion via the central nervous system. Endocrinology. 1980;115:1952–7.CrossRefGoogle Scholar
  25. 25.
    Mauras N, et al. Augmentation of growth hormone secretion during puberty: evidence for a pulse amplitude-modulated phenomenon. J Clin Endocrinol Metab. 1987;64(3):596–601.PubMedCrossRefGoogle Scholar
  26. 26.
    Rose SR, et al. Spontaneous growth hormone secretion increases during puberty in normal girls and boys. J Clin Endocrinol Metab. 1991;73:428–35.PubMedCrossRefGoogle Scholar
  27. 27.
    Martha PM Jr, et al. Endogenous growth hormone secretion and clearance rates in normal boys, as determined by deconvolution analysis: relationship to age, pubertal status, and body mass. J Clin Endocrinol Metab. 1992;74(2):336–44.PubMedGoogle Scholar
  28. 28.
    Dudl RJ, et al. Effect of age on growth hormone secretion in man. J Clin Endocrinol Metab. 1973;37(1):11–6.PubMedCrossRefGoogle Scholar
  29. 29.
    Rudman D, et al. Impaired growth hormone secretion in the adult population: relation to age and adiposity. J Clin Invest. 1981;67(5):1361–9.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Leung AMBGA. The influence of thyroid hormone on growth hormone secretion and action. In: Cohen LE, editor. Growth hormone deficiency, physiology and clinical management. Cham: Springer International Publishing; 2016. p. 29–46.CrossRefGoogle Scholar
  31. 31.
    Stanley TL. Obesity and growth hormone secretion. In: Cohen LE, editor. Growth hormone deficiency, physiology and clinical management. Cham: Springer International Publishing; 2016. p. 63–77.CrossRefGoogle Scholar
  32. 32.
    Baskaran CMM. Undernutrition, inflammation and catabolic illness, and growth hormone secretion. In: Cohen LE, editor. Growth hormone deficiency, physiology and clinical management. Cham: Springer International Publishing; 2016. p. 47–61.CrossRefGoogle Scholar
  33. 33.
    Korbonits M, Grossman AB. Growth hormone-releasing peptide and its analogues Novel stimuli to growth hormone release. Trends Endocrinol Metab. 1995;6(2):43–9.PubMedCrossRefGoogle Scholar
  34. 34.
    Smith RG, et al. Peptidomimetic regulation of growth hormone secretion. Endocr Rev. 1997;18(5):621–45.PubMedCrossRefGoogle Scholar
  35. 35.
    Howard AD, et al. A receptor in pituitary and hypothalamus that functions in growth hormone release. Science. 1996;273(5277):974–7.PubMedCrossRefGoogle Scholar
  36. 36.
    Kojima M, et al. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature. 1999;402(6762):656–60.PubMedCrossRefGoogle Scholar
  37. 37.
    Hataya Y, et al. A low dose of ghrelin stimulates growth hormone (GH) release synergistically with GH-releasing hormone in humans. J Clin Endocrinol Metab. 2001;86(9):4552.PubMedCrossRefGoogle Scholar
  38. 38.
    Date Y, et al. Ghrelin, a novel growth hormone-releasing acylated peptide, is synthesized in a distinct endocrine cell type in the gastrointestinal tracts of rats and humans. Endocrinology. 2000;141(11):4255–61.PubMedCrossRefGoogle Scholar
  39. 39.
    Nakazato M, et al. A role for ghrelin in the central regulation of feeding. Nature. 2001;409(6817):194–8.PubMedCrossRefGoogle Scholar
  40. 40.
    Higgins SC, Gueorguiev M, Korbonits M. Ghrelin, the peripheral hunger hormone. Ann Med. 2007;39(2):116–36.PubMedCrossRefGoogle Scholar
  41. 41.
    Baumann G. Growth hormone binding protein 2001. J Pediatr Endocrinol Metab. 2001;14(4):355–75.PubMedCrossRefGoogle Scholar
  42. 42.
    Bazan JF. Structural design and molecular evolution of a cytokine receptor superfamily. Proc Natl Acad Sci U S A. 1990;87(18):6934–8.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Godowski PJ, et al. Characterization of the human growth hormone receptor gene and demonstration of a partial gene deletion in two patients with Laron-type dwarfism. Proc Natl Acad Sci U S A. 1989;86(20):8083–7.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Gent J, et al. Ligand-independent growth hormone receptor dimerization occurs in the endoplasmic reticulum and is required for ubiquitin system-dependent endocytosis. Proc Natl Acad Sci U S A. 2002;99(15):9858–63.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Brown RJ, et al. Model for growth hormone receptor activation based on subunit rotation within a receptor dimer. Nat Struct Mol Biol. 2005;12(9):814–21.PubMedCrossRefGoogle Scholar
  46. 46.
    Campbell GS, Christian LJ, Carter-Su C. Evidence for involvement of the growth hormone receptor-associated tyrosine kinase in actions of growth hormone. J Biol Chem. 1993;268(10):7427–34.PubMedGoogle Scholar
  47. 47.
    Argetsinger LS, et al. Identification of JAK2 as a growth hormone receptor-associated tyrosine kinase. Cell. 1993;74(2):237–44.PubMedCrossRefGoogle Scholar
  48. 48.
    Silva CM, Weber MJ, Thorner MO. Stimulation of tyrosine phosphorylation in human cells by activation of the human growth hormone receptor. Endocrinology. 1995;132:101–8.CrossRefGoogle Scholar
  49. 49.
    Silva CM, Lu H, Day RN. Characterization and cloning of STAT5 from IM-9 cells and its activation by growth hormone. Mol Endocrinol. 1996;10(5):508–18.PubMedGoogle Scholar
  50. 50.
    Smit LS, et al. The role of the growth hormone (GH) receptor and JAK1 and JAK2 kinases in the activation of Stats 1, 3, and 5 by GH. Mol Endocrinol. 1996;10(5):519–33.PubMedGoogle Scholar
  51. 51.
    Salmon WD Jr, Daughaday WH. A hormonally controlled serum factor which stimulates sulfate incorporation by cartilage in vitro. J Lab Clin Med. 1957;49(6):825–36.PubMedGoogle Scholar
  52. 52.
    Daughaday WH, Rotwein P. Insulin-like growth factors I and II. Peptide, messenger ribonucleic acid and gene structures, serum, and tissue concentrations. Endocr Rev. 1989;10(1):68–91.PubMedCrossRefGoogle Scholar
  53. 53.
    Ohlsson C, et al. Growth hormone and bone. Endocr Rev. 1998;19(1):55–79.PubMedGoogle Scholar
  54. 54.
    Isaksson OG, Jansson JO, Gause IA. Growth hormone stimulates longitudinal bone growth directly. Science. 1982;216(4551):1237–9.PubMedCrossRefGoogle Scholar
  55. 55.
    Maor G, Hochberg Z, Silbermann M. Growth hormone stimulates the growth of mouse neonatal condylar cartilage in vitro. Acta Endocrinol. 1989;120(4):526–32.PubMedGoogle Scholar
  56. 56.
    Maor G, et al. Human growth hormone enhances chondrogenesis and osteogenesis in a tissue culture system of chondroprogenitor cells. Endocrinology. 1989;125(3):1239–45.PubMedCrossRefGoogle Scholar
  57. 57.
    Isgaard J, et al. Regulation of insulin-like growth factor messenger ribonucleic acid in rat growth plate by growth hormone. Endocrinology. 1988;122(4):1515–20.PubMedCrossRefGoogle Scholar
  58. 58.
    Gluckman PD, et al. Studies of insulin-like growth factor I and II by specific radioligand assays in umbilical cord blood. Clin Endocrinol. 1983;19:405.CrossRefGoogle Scholar
  59. 59.
    Bennett A, et al. Levels of insulin-like growth factors I and II in human cord blood. J Clin Endocrinol Metab. 1983;57(3):609–12.PubMedCrossRefGoogle Scholar
  60. 60.
    Luna AM, et al. Somatomedins in adolescence: a cross-sectional study of the effect of puberty on plasma insulin-like growth factor I and II levels. J Clin Endocrinol Metab. 1983;57(2):268–71.PubMedCrossRefGoogle Scholar
  61. 61.
    Cara JF, Rosenfield RL, Furlanetto RW. A longitudinal study of the relationship of plasma somatomedin-C concentration to the pubertal growth spurt. Am J Dis Child. 1987;141(5):562–4.PubMedGoogle Scholar
  62. 62.
    Johanson AJ, Blizzard RM. Low somatomedin-C levels in older men rise in response to growth hormone administration. Johns Hopkins Med J. 1981;149(3):115–7.PubMedGoogle Scholar
  63. 63.
    Elgin RG, Busby WH Jr, Clemmons DR. An insulin-like growth factor (IGF) binding protein enhances the biologic response to IGF-I. Proc Natl Acad Sci U S A. 1987;84(10):3254–8.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Lamson G, Giudice LC, Rosenfeld RG. Insulin-like growth factor binding proteins: structural and molecular relationships. Growth Factors. 1991;5(1):19–28.PubMedCrossRefGoogle Scholar
  65. 65.
    Kelley KM, et al. Insulin-like growth factor-binding proteins (IGFBPs) and their regulatory dynamics. Int J Biochem Cell Biol. 1996;28(6):619–37.PubMedCrossRefGoogle Scholar
  66. 66.
    Chernausek SD, Jacobs S, Van Wyk JJ. Structural similarities between human receptors for somatomedin C and insulin: analysis by affinity labeling. Biochemistry. 1981;20(26):7345–50.PubMedCrossRefGoogle Scholar
  67. 67.
    Massague J, Czech MP. The subunit structures of two distinct receptors for insulin-like growth factors I and II and their relationship to the insulin receptor. J Biol Chem. 1982;257(9):5038–45.PubMedGoogle Scholar
  68. 68.
    Oh Y, et al. Characterization of the affinities of insulin-like growth factor (IGF)-binding proteins 1-4 for IGF-I, IGF-II, IGF-I/insulin hybrid, and IGF-I analogs. Endocrinology. 1993;132(3):1337–44.PubMedCrossRefGoogle Scholar
  69. 69.
    Rona RJ, Tanner JM. Aetiology of idiopathic growth hormone deficiency in England and Wales. Arch Dis Child. 1977;52:197–208.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Vimpani GV, et al. Prevalence of severe growth hormone deficiency. Br Med J. 1977;2(6084):427–30.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Gaylinn BD, et al. The mutant growth hormone-releasing hormone (GHRH) receptor of the little mouse does not bind GHRH. Endocrinology. 1999;140(11):5066–74.PubMedCrossRefGoogle Scholar
  72. 72.
    Godfrey P, et al. GHRH receptor of little mice contains a missense mutation in the extracellular domain that disrupts receptor function. Nat Genet. 1993;4(3):227–32.PubMedCrossRefGoogle Scholar
  73. 73.
    Lin SC, et al. Molecular basis of the little mouse phenotype and implications for cell type-specific growth. Nature. 1993;364(6434):208–13.PubMedCrossRefGoogle Scholar
  74. 74.
    Wajnrajch MP, et al. Nonsense mutation in the human growth hormone-releasing hormone receptor causes growth failure analogous to the little (lit) mouse. Nat Genet. 1996;12(1):88–90.PubMedCrossRefGoogle Scholar
  75. 75.
    Maheshwari HG, et al. Phenotype and genetic analysis of a syndrome caused by an inactivating mutation in the growth hormone-releasing hormone receptor: Dwarfism of Sindh. J Clin Endocrinol Metab. 1998;83(11):4065–74.PubMedGoogle Scholar
  76. 76.
    Wit JMLMBG. Growth hormone-releasing hormone receptor and growth hormone gene abnormalities. In: Cohen LE, editor. Growth hormone deficiency, physiology and clinical management. Cham: Springer International Publishing; 2016. p. 149–75.CrossRefGoogle Scholar
  77. 77.
    Dasen JS, et al. Temporal regulation of a paired-like homeodomain repressor/TLE corepressor complex and a related activator is required for pituitary organogenesis. Genes Dev. 2001;15(23):3193–207.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Kelberman D, et al. Genetic regulation of pituitary gland development in human and mouse. Endocr Rev. 2009;30(7):790–829.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Scully KM, Rosenfeld MG. Pituitary development: regulatory codes in mammalian organogenesis. Science. 2002;295(5563):2231–5.PubMedCrossRefGoogle Scholar
  80. 80.
    Wang Y, Martin JF, Bai CB. Direct and indirect requirements of Shh/Gli signaling in early pituitary development. Dev Biol. 2010;348(2):199–209.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Park HL, et al. Mouse Gli1 mutants are viable but have defects in SHH signaling in combination with a Gli2 mutation. Development. 2000;127(8):1593–605.PubMedGoogle Scholar
  82. 82.
    Cohen LE. GLI2 mutations as a cause of hypopituitarism. Pediatr Endocrinol Rev. 2012;9(4):706–9.PubMedGoogle Scholar
  83. 83.
    Dattani MT, et al. Mutations in the homeobox gene HESX1/Hesx1 associated with septo-optic dysplasia in human and mouse. Nat Genet. 1998;19(2):125–33.PubMedCrossRefGoogle Scholar
  84. 84.
    Hermesz E, Mackem S, Mahon KA. Rpx: a novel anterior-restricted homeobox gene progressively activated in the prechordal plate, anterior neural plate and Rathke’s pouch of the mouse embryo. Development. 1996;122(1):41–52.PubMedGoogle Scholar
  85. 85.
    Cohen LE. Genetic disorders of the pituitary. Curr Opin Endocrinol Diabetes Obes. 2012;19(1):33–9.PubMedCrossRefGoogle Scholar
  86. 86.
    Thomas PQ, et al. Heterozygous HESX1 mutations associated with isolated congenital pituitary hypoplasia and septo-optic dysplasia. Hum Mol Genet. 2001;10(1):39–45.PubMedCrossRefGoogle Scholar
  87. 87.
    McNay DE, et al. HESX1 mutations are an uncommon cause of septooptic dysplasia and hypopituitarism. J Clin Endocrinol Metab. 2007;92(2):691–7.PubMedCrossRefGoogle Scholar
  88. 88.
    Fang Q, et al. HESX1 mutations in patients with congenital hypopituitarism: variable phenotypes with the same genotype. Clin Endocrinol. 2016;85(3):408–14.CrossRefGoogle Scholar
  89. 89.
    Lamonerie T, et al. Ptx1, a bicoid-related homeo box transcription factor involved in transcription of the pro-opiomelanocortin gene. Genes Dev. 1996;10(10):1284–95.PubMedCrossRefGoogle Scholar
  90. 90.
    Shimada A, et al. A novel mutation in OTX2 causes combined pituitary hormone deficiency, bilateral microphthalmia, and agenesis of the left internal carotid artery. Horm Res Paediatr. 2016;86(1):62–9.PubMedCrossRefGoogle Scholar
  91. 91.
    Lonero A, et al. A novel OTX2 gene frameshift mutation in a child with microphthalmia, ectopic pituitary and growth hormone deficiency. J Pediatr Endocrinol Metab. 2016;29(5):603–5.PubMedCrossRefGoogle Scholar
  92. 92.
    Tajima T, Ishizu K, Nakamura A. Molecular and clinical findings in patients with LHX4 and OTX2 mutations. Clin Pediatr Endocrinol. 2013;22(2):15–23.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Gorbenko Del Blanco D, et al. A novel OTX2 mutation in a patient with combined pituitary hormone deficiency, pituitary malformation, and an underdeveloped left optic nerve. Eur J Endocrinol. 2012;167(3):441–52.PubMedCrossRefGoogle Scholar
  94. 94.
    Diaczok D, et al. A novel dominant negative mutation of OTX2 associated with combined pituitary hormone deficiency. J Clin Endocrinol Metab. 2008;93(11):4351–9.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Dateki S, et al. OTX2 mutation in a patient with anophthalmia, short stature, and partial growth hormone deficiency: functional studies using the IRBP, HESX1, and POU1F1 promoters. J Clin Endocrinol Metab. 2008;93(10):3697–702.PubMedCrossRefGoogle Scholar
  96. 96.
    Tajima T, et al. OTX2 loss of function mutation causes anophthalmia and combined pituitary hormone deficiency with a small anterior and ectopic posterior pituitary. J Clin Endocrinol Metab. 2009;94(1):314–9.PubMedCrossRefGoogle Scholar
  97. 97.
    Dateki S, et al. Heterozygous orthodenticle homeobox 2 mutations are associated with variable pituitary phenotype. J Clin Endocrinol Metab. 2010;95(2):756–64.PubMedCrossRefGoogle Scholar
  98. 98.
    Henderson RH, et al. A rare de novo nonsense mutation in OTX2 causes early onset retinal dystrophy and pituitary dysfunction. Mol Vis. 2009;15:2442–7.PubMedPubMedCentralGoogle Scholar
  99. 99.
    Suh H, et al. Pitx2 is required at multiple stages of pituitary organogenesis: pituitary primordium formation and cell specification. Development. 2002;129(2):329–37.PubMedGoogle Scholar
  100. 100.
    Lin CR, et al. Pitx2 regulates lung asymmetry, cardiac positioning and pituitary and tooth morphogenesis. Nature. 1999;401(6750):279–82.PubMedCrossRefGoogle Scholar
  101. 101.
    Gage PJ, Suh H, Camper SA. Dosage requirement of Pitx2 for development of multiple organs. Development. 1999;126(20):4643–51.PubMedGoogle Scholar
  102. 102.
    Semina EV, Reiter RS, Murray JC. Isolation of a new homeobox gene belonging to the Pitx/Rieg family: expression during lens development and mapping to the aphakia region on mouse chromosome 19. Hum Mol Genet. 1997;6(12):2109–16.PubMedCrossRefGoogle Scholar
  103. 103.
    Amendt BA, et al. The molecular basis of Rieger syndrome. Analysis of Pitx2 homeodomain protein activities. J Biol Chem. 1998;273(32):20066–72.PubMedCrossRefGoogle Scholar
  104. 104.
    Amendt BA, Semina EV, Alward WL. Rieger syndrome: a clinical, molecular, and biochemical analysis. Cell Mol Life Sci. 2000;57(11):1652–66.PubMedCrossRefGoogle Scholar
  105. 105.
    Zhadanov AB, et al. Expression pattern of the murine LIM class homeobox gene Lhx3 in subsets of neural and neuroendocrine tissues. Dev Dyn. 1995;202(4):354–64.PubMedCrossRefGoogle Scholar
  106. 106.
    Sheng HZ, et al. Specification of pituitary cell lineages by the LIM homeobox gene Lhx3. Science. 1996;272(5264):1004–7.PubMedCrossRefGoogle Scholar
  107. 107.
    Kristrom B, et al. A novel mutation in the LIM homeobox 3 gene is responsible for combined pituitary hormone deficiency, hearing impairment, and vertebral malformations. J Clin Endocrinol Metab. 2009;94(4):1154–61.PubMedCrossRefGoogle Scholar
  108. 108.
    Rajab A, et al. Novel mutations in LHX3 are associated with hypopituitarism and sensorineural hearing loss. Hum Mol Genet. 2008;17(14):2150–9.PubMedCrossRefGoogle Scholar
  109. 109.
    Pfaeffle RW, et al. Four novel mutations of the LHX3 gene cause combined pituitary hormone deficiencies with or without limited neck rotation. J Clin Endocrinol Metab. 2007;92(5):1909–19.PubMedCrossRefGoogle Scholar
  110. 110.
    Sobrier ML, et al. Symptomatic heterozygotes and prenatal diagnoses in a nonconsanguineous family with syndromic combined pituitary hormone deficiency resulting from two novel LHX3 mutations. J Clin Endocrinol Metab. 2012;97(3):E503–9.PubMedCrossRefGoogle Scholar
  111. 111.
    Castinetti FBT. Combined pituitary growth hormone deficiency. In: Cohen LE, editor. Growth hormone deficiency, physiology and clinical management. Cham: Springer International Publishing; 2016. p. 177–94.CrossRefGoogle Scholar
  112. 112.
    Castinetti F, et al. MECHANISMS IN ENDOCRINOLOGY: an update in the genetic aetiologies of combined pituitary hormone deficiency. Eur J Endocrinol. 2016;174(6):R239–47.PubMedCrossRefGoogle Scholar
  113. 113.
    Kelberman D, et al. Mutations within Sox2/SOX2 are associated with abnormalities in the hypothalamo-pituitary-gonadal axis in mice and humans. J Clin Invest. 2006;116(9):2442–55.PubMedPubMedCentralGoogle Scholar
  114. 114.
    Macchiaroli A, et al. A novel heterozygous SOX2 mutation causing congenital bilateral anophthalmia, hypogonadotropic hypogonadism and growth hormone deficiency. Gene. 2014;534(2):282–5.PubMedCrossRefGoogle Scholar
  115. 115.
    Raivio T, et al. Genetic overlap in Kallmann syndrome, combined pituitary hormone deficiency, and septo-optic dysplasia. J Clin Endocrinol Metab. 2012;97(4):E694–9.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Fluck C, et al. Phenotypic variability in familial combined pituitary hormone deficiency caused by a PROP1 gene mutation resulting in the substitution of Arg-->Cys at codon 120 (R120C). J Clin Endocrinol Metab. 1998;83(10):3727–34.PubMedGoogle Scholar
  117. 117.
    Perez Millan MI, et al. PROP1 triggers epithelial-mesenchymal transition-like process in pituitary stem cells. Elife. 2016;5:pii: e14470.CrossRefGoogle Scholar
  118. 118.
    Vieira TC, da Silva MR, Abucham J. The natural history of the R120C PROP1 mutation reveals a wide phenotypic variability in two untreated adult brothers with combined pituitary hormone deficiency. Endocrine. 2006;30(3):365–9.PubMedCrossRefGoogle Scholar
  119. 119.
    Lebl J, et al. Auxological and endocrine phenotype in a population-based cohort of patients with PROP1 gene defects. Eur J Endocrinol. 2005;153(3):389–96.PubMedCrossRefGoogle Scholar
  120. 120.
    Bottner A, et al. PROP1 mutations cause progressive deterioration of anterior pituitary function including adrenal insufficiency: a longitudinal analysis. J Clin Endocrinol Metab. 2004;89(10):5256–65.PubMedCrossRefGoogle Scholar
  121. 121.
    Pavel ME, et al. Long-term follow-up of childhood-onset hypopituitarism in patients with the PROP-1 gene mutation. Horm Res. 2003;60(4):168–73.PubMedGoogle Scholar
  122. 122.
    Deladoey J, et al. “Hot spot” in the PROP1 gene responsible for combined pituitary hormone deficiency. J Clin Endocrinol Metab. 1999;84(5):1645–50.PubMedGoogle Scholar
  123. 123.
    Himes AD, Raetzman LT. Premature differentiation and aberrant movement of pituitary cells lacking both Hes1 and Prop1. Dev Biol. 2009;325(1):151–61.PubMedCrossRefGoogle Scholar
  124. 124.
    Fofanova O, et al. Compound heterozygous deletion of the PROP-1 gene in children with combined pituitary hormone deficiency. J Clin Endocrinol Metab. 1998;83(7):2601–4.PubMedCrossRefGoogle Scholar
  125. 125.
    Fofanova OV, et al. A mutational hot spot in the Prop-1 gene in Russian children with combined pituitary hormone deficiency. Pituitary. 1998;1(1):45–9.PubMedCrossRefGoogle Scholar
  126. 126.
    Cogan JD, et al. The PROP1 2-base pair deletion is a common cause of combined pituitary hormone deficiency. J Clin Endocrinol Metab. 1998;83(9):3346–9.PubMedGoogle Scholar
  127. 127.
    Bodner M, et al. The pituitary-specific transcription factor GHF-1 is a homeobox-containing protein. Cell. 1988;55(3):505–18.PubMedCrossRefGoogle Scholar
  128. 128.
    Simmons DM, et al. Pituitary cell phenotypes involve cell-specific Pit-1 mRNA translation and synergistic interactions with other classes of transcription factors. Genes Dev. 1990;4(5):695–711.PubMedCrossRefGoogle Scholar
  129. 129.
    Tatsumi K, et al. Cretinism with combined hormone deficiency caused by a mutation in the PIT1 gene. Nat Genet. 1992;1(1):56–8.PubMedCrossRefGoogle Scholar
  130. 130.
    Radovick S, et al. A mutation in the POU-homeodomain of Pit-1 responsible for combined pituitary hormone deficiency. Science. 1992;257(5073):1115–8.PubMedCrossRefGoogle Scholar
  131. 131.
    Pfaffle RW, et al. Mutation of the POU-specific domain of Pit-1 and hypopituitarism without pituitary hypoplasia. Science. 1992;257(5073):1118–21.PubMedCrossRefGoogle Scholar
  132. 132.
    Ohta K, et al. Mutations in the Pit-1 gene in children with combined pituitary hormone deficiency. Biochem Biophys Res Commun. 1992;189(2):851–5.PubMedCrossRefGoogle Scholar
  133. 133.
    Cohen LE, et al. A “hot spot” in the Pit-1 gene responsible for combined pituitary hormone deficiency: clinical and molecular correlates. J Clin Endocrinol Metab. 1995;80(2):679–84.PubMedGoogle Scholar
  134. 134.
    Okamoto N, et al. Monoallelic expression of normal mRNA in the PIT1 mutation heterozygotes with normal phenotype and biallelic expression in the abnormal phenotype. Hum Mol Genet. 1994;3(9):1565–8.PubMedCrossRefGoogle Scholar
  135. 135.
    de Zegher F, et al. The prenatal role of thyroid hormone evidenced by fetomaternal Pit-1 deficiency. J Clin Endocrinol Metab. 1995;80(11):3127–30.PubMedGoogle Scholar
  136. 136.
    Holl RW, et al. Combined pituitary deficiencies of growth hormone, thyroid stimulating hormone and prolactin due to Pit-1 gene mutation: a case report. Eur J Pediatr. 1997;156(11):835–7.PubMedCrossRefGoogle Scholar
  137. 137.
    Aarskog D, et al. Pituitary dwarfism in the R271W Pit-1 gene mutation. Eur J Pediatr. 1997;156(11):829–34.PubMedCrossRefGoogle Scholar
  138. 138.
    Arnhold IJ, et al. Clinical and molecular characterization of a Brazilian patient with Pit-1 deficiency. J Pediatr Endocrinol Metab. 1998;11(5):623–30.PubMedCrossRefGoogle Scholar
  139. 139.
    Ward L, et al. Severe congenital hypopituitarism with low prolactin levels and age-dependent anterior pituitary hypoplasia: a clue to a PIT-1 mutation. J Pediatr. 1998;132(6):1036–8.PubMedCrossRefGoogle Scholar
  140. 140.
    Jacobson EM, et al. Structure of Pit-1 POU domain bound to DNA as a dimer: unexpected arrangement and flexibility. Genes Dev. 1997;11(2):198–212.PubMedCrossRefGoogle Scholar
  141. 141.
    Cohen LE, et al. Defective retinoic acid regulation of the Pit-1 gene enhancer: a novel mechanism of combined pituitary hormone deficiency. Mol Endocrinol. 1999;13(3):476–84.PubMedCrossRefGoogle Scholar
  142. 142.
    Romero CJ, Nesi-Franca S, Radovick S. The molecular basis of hypopituitarism. Trends Endocrinol Metab. 2009;20(10):506–16.PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Illig R, Prader A, Zachmann M. Hereditary prenatal growth hormone deficiency with increased tendency to growth hormone antibody formation (A-type of isolated growth hormone deficiency). Acta Paediatr Scandinavica. 1971;60:607.Google Scholar
  144. 144.
    Phillips JA, Cogan JD. Molecular basis of familial human growth hormone deficiency. J Clin Endocrinol Metab. 1994;78:11–6.PubMedGoogle Scholar
  145. 145.
    Braga S, et al. Familial growth hormone deficiency resulting from a 7.6 kb deletion within the growth hormone gene cluster. Am J Med Genet. 1986;25(3):443–52.PubMedCrossRefGoogle Scholar
  146. 146.
    Perez Jurado LA, Argente J. Molecular basis of familial growth hormone deficiency. Horm Res. 1994;42(4–5):189–97.PubMedCrossRefGoogle Scholar
  147. 147.
    Madeira JL, et al. A homozygous point mutation in the GH1 promoter (c.-223C>T) leads to reduced GH1 expression in siblings with isolated GH deficiency (IGHD). Eur J Endocrinol. 2016;175(2):K7–K15.PubMedCrossRefGoogle Scholar
  148. 148.
    Prader A, et al. Long-term treatment with human growth hormone (Raben) in small doses. Evaluation of 18 hypopituitary patients. Helv Paediatr Acta. 1967;22(5):423–40.PubMedGoogle Scholar
  149. 149.
    Phillips JA. Inherited defects in growth hormone synthesis and action. In: Scriver CR, et al., editors. Metabolic basis of inherited disease. St. Louis: McGraw Hill; 1995. p. 3023–44.Google Scholar
  150. 150.
    Mullis PE, et al. Isolated autosomal dominant growth hormone deficiency: an evolving pituitary deficit? A multicenter follow-up study. J Clin Endocrinol Metab. 2005;90(4):2089–96.PubMedCrossRefGoogle Scholar
  151. 151.
    Binder G, Ranke MB. Screening for growth hormone (GH) gene splice-site mutations in sporadic cases with severe isolated GH deficiency using ectopic transcript analysis. J Clin Endocrinol Metab. 1995;80(4):1247–52.PubMedGoogle Scholar
  152. 152.
    Cogan JD, et al. Familial growth hormone deficiency: a model of dominant and recessive mutations affecting a monomeric protein. J Clin Endocrinol Metab. 1994;79(5):1261–5.PubMedGoogle Scholar
  153. 153.
    Cogan JD, et al. Heterogeneous growth hormone (GH) gene mutations in familial GH deficiency. J Clin Endocrinol Metab. 1993;76(5):1224–8.PubMedGoogle Scholar
  154. 154.
    Duquesnoy P, et al. A frameshift mutation causing isolated growth hormone deficiency type IA. Am J Hum Genet. 1990;47:A110.Google Scholar
  155. 155.
    Igarashi Y, et al. A new type of inherited growth hormone deficiency: a compound heterozygote of a 6.7 kb deletion, including the GH-1 gene, and two base deletion deletion in the third exon of the GH-1 gene. Pediatr Res. 1993;33:S35.CrossRefGoogle Scholar
  156. 156.
    Lopez-Bermejo A, Buckway CK, Rosenfeld RG. Genetic defects of the growth hormone-insulin-like growth factor axis. Trends Endocrinol Metab. 2000;11(2):39–49.PubMedCrossRefGoogle Scholar
  157. 157.
    Procter AM, Phillips JA 3rd, Cooper DN. The molecular genetics of growth hormone deficiency. Hum Genet. 1998;103(3):255–72.PubMedCrossRefGoogle Scholar
  158. 158.
    Cogan JD, et al. A recurring dominant negative mutation causes autosomal dominant growth hormone deficiency – a clinical research center study. J Clin Endocrinol Metab. 1995;80(12):3591–5.PubMedGoogle Scholar
  159. 159.
    Kamijo T, et al. An identical mutation in GH 1 gene associated with IGHD in two sporadic Japanese patients. Horm Res. 1997;48(suppl 2):92.Google Scholar
  160. 160.
    Saitoh H, et al. A Japanese family with autosomal dominant growth hormone deficiency. Eur J Pediatr. 1999;158(8):624–7.PubMedCrossRefGoogle Scholar
  161. 161.
    Fleisher TA, et al. X-linked hypogammaglobulinemia and isolated growth hormone deficiency. N Engl J Med. 1980;302(26):1429–34.PubMedCrossRefGoogle Scholar
  162. 162.
    Conley ME, et al. Molecular analysis of X-linked agammaglobulinemia with growth hormone deficiency. J Pediatr. 1991;119(3):392–7.PubMedCrossRefGoogle Scholar
  163. 163.
    Takahashi Y, et al. Brief report: short stature caused by a mutant growth hormone. N Engl J Med. 1996;334(7):432–6.PubMedCrossRefGoogle Scholar
  164. 164.
    Takahashi Y, et al. Biologically inactive growth hormone caused by an amino acid substitution. J Clin Invest. 1997;100(5):1159–65.PubMedPubMedCentralCrossRefGoogle Scholar
  165. 165.
    Hwa V, et al. Severe growth hormone insensitivity resulting from total absence of signal transducer and activator of transcription 5b. J Clin Endocrinol Metab. 2005;90(7):4260–6.PubMedCrossRefGoogle Scholar
  166. 166.
    Kofoed EM, et al. Growth hormone insensitivity associated with a STAT5b mutation. N Engl J Med. 2003;349(12):1139–47.PubMedCrossRefGoogle Scholar
  167. 167.
    Fang P, et al. A mutant signal transducer and activator of transcription 5b, associated with growth hormone insensitivity and insulin-like growth factor-I deficiency, cannot function as a signal transducer or transcription factor. J Clin Endocrinol Metab. 2006;91(4):1526–34.PubMedCrossRefGoogle Scholar
  168. 168.
    Chia DJ, et al. Aberrant folding of a mutant Stat5b causes growth hormone insensitivity and proteasomal dysfunction. J Biol Chem. 2006;281(10):6552–8.PubMedCrossRefGoogle Scholar
  169. 169.
    Laron A, Pertzelan A, Mannheimer S. Genetic pituitary dwarfism with high serum concentration of growth hormone. A new inborn error of metabolism? Israel J Med Science. 1966;2:152–5.Google Scholar
  170. 170.
    Amselem S, et al. Laron dwarfism and mutations of the growth hormone-receptor gene. N Engl J Med. 1989;321(15):989–95.PubMedCrossRefGoogle Scholar
  171. 171.
    Amselem S, et al. Recurrent nonsense mutations in the growth hormone receptor from patients with Laron dwarfism. J Clin Invest. 1991;87(3):1098–102.PubMedPubMedCentralCrossRefGoogle Scholar
  172. 172.
    Berg MA, et al. Diverse growth hormone receptor gene mutations in Laron syndrome. Am J Hum Genet. 1993;52(5):998–1005.PubMedPubMedCentralGoogle Scholar
  173. 173.
    Berg MA, et al. Mutation creating a new splice site in the growth hormone receptor genes of 37 Ecuadorean patients with Laron syndrome. Hum Mutat. 1992;1(1):24–32.PubMedCrossRefGoogle Scholar
  174. 174.
    Kaji H, et al. Novel compound heterozygous mutations of growth hormone (GH) receptor gene in a patient with GH insensitivity syndrome. J Clin Endocrinol Metab. 1997;82(11):3705–9.PubMedGoogle Scholar
  175. 175.
    Walker JL, et al. A novel mutation affecting the interdomain link region of the growth hormone receptor in a Vietnamese girl, and response to long-term treatment with recombinant human insulin-like growth factor-I and luteinizing hormone-releasing hormone analogue. J Clin Endocrinol Metab. 1998;83(7):2554–61.PubMedGoogle Scholar
  176. 176.
    Woods KA, et al. A homozygous splice site mutation affecting the intracellular domain of the growth hormone (GH) receptor resulting in Laron syndrome with elevated GH-binding protein. J Clin Endocrinol Metab. 1996;81(5):1686–90.PubMedGoogle Scholar
  177. 177.
    Ayling RM, et al. A dominant-negative mutation of the growth hormone receptor causes familial short stature. Nat Genet. 1997;16(1):13–4.PubMedCrossRefGoogle Scholar
  178. 178.
    Goddard AD, et al. Mutations of the growth hormone receptor in children with idiopathic short stature. The Growth Hormone Insensitivity Study Group. N Engl J Med. 1995;333(17):1093–8.PubMedCrossRefGoogle Scholar
  179. 179.
    Iida K, et al. Growth hormone (GH) insensitivity syndrome with high serum GH-binding protein levels caused by a heterozygous splice site mutation of the GH receptor gene producing a lack of intracellular domain. J Clin Endocrinol Metab. 1998;83(2):531–7.PubMedGoogle Scholar
  180. 180.
    Baumann G, Shaw MA, Winter RJ. Absence of the plasma growth hormone-binding protein in Laron-type dwarfism. J Clin Endocrinol Metab. 1987;65(4):814–6.PubMedCrossRefGoogle Scholar
  181. 181.
    Backeljauw PF, Underwood LE. Prolonged treatment with recombinant insulin-like growth factor-I in children with growth hormone insensitivity syndrome – a clinical research center study. GHIS Collaborative Group. J Clin Endocrinol Metab. 1996;81(9):3312–7.PubMedGoogle Scholar
  182. 182.
    Laron Z, Anin S, Klinger B. Long-term IGF-1 treatment of children with Laron syndrome. Lessons fro Laron syndrome 1966–1992. Pediatr Adolesc Endocrinol. 1993;24:226–36.Google Scholar
  183. 183.
    Woods KA, et al. Intrauterine growth retardation and postnatal growth failure associated with deletion of the insulin-like growth factor I gene. N Engl J Med. 1996;335(18):1363–7.PubMedCrossRefGoogle Scholar
  184. 184.
    Bowcock A, Sartorelli V. Polymorphism and mapping of the IGF1 gene, and absence of association with stature among African Pygmies. Hum Genet. 1990;85(3):349–54.PubMedCrossRefGoogle Scholar
  185. 185.
    Geffner ME, et al. Insulin-like growth factor-I unresponsiveness in an Efe Pygmy. Biochem Biophys Res Commun. 1993;193(3):1216–23.PubMedCrossRefGoogle Scholar
  186. 186.
    Geffner ME, et al. Insulin-like growth factor I resistance in immortalized T cell lines from African Efe Pygmies. J Clin Endocrinol Metab. 1995;80(12):3732–8.PubMedCrossRefGoogle Scholar
  187. 187.
    Bozzola M, et al. The shortness of Pygmies is associated with severe under-expression of the growth hormone receptor. Mol Genet Metab. 2009;98(3):310–3.PubMedCrossRefGoogle Scholar
  188. 188.
    Inagaki K, et al. A familial insulin-like growth factor-I receptor mutant leads to short stature: clinical and biochemical characterization. J Clin Endocrinol Metab. 2007;92(4):1542–8.PubMedCrossRefGoogle Scholar
  189. 189.
    Raile K, et al. Clinical and functional characteristics of the human Arg59Ter insulin-like growth factor i receptor (IGF1R) mutation: implications for a gene dosage effect of the human IGF1R. J Clin Endocrinol Metab. 2006;91(6):2264–71.PubMedCrossRefGoogle Scholar
  190. 190.
    Walenkamp MJ, et al. A variable degree of intrauterine and postnatal growth retardation in a family with a missense mutation in the insulin-like growth factor I receptor. J Clin Endocrinol Metab. 2006;91(8):3062–70.PubMedCrossRefGoogle Scholar
  191. 191.
    Kawashima Y, et al. Mutation at cleavage site of insulin-like growth factor receptor in a short-stature child born with intrauterine growth retardation. J Clin Endocrinol Metab. 2005;90(8):4679–87.PubMedCrossRefGoogle Scholar
  192. 192.
    Abuzzahab MJ, et al. IGF-I receptor mutations resulting in intrauterine and postnatal growth retardation. N Engl J Med. 2003;349(23):2211–22.PubMedCrossRefGoogle Scholar
  193. 193.
    Roback EW, et al. An infant with deletion of the distal long arm of chromosome 15 (q26.1----qter) and loss of insulin-like growth factor 1 receptor gene. Am J Med Genet. 1991;38(1):74–9.PubMedPubMedCentralCrossRefGoogle Scholar
  194. 194.
    Bierich JR, et al. Pseudopituitary dwarfism due to resistance to somatomedin: a new syndrome. Eur J Pediatr. 1984;142(3):186–8.PubMedCrossRefGoogle Scholar
  195. 195.
    Heath-Monnig E, et al. Measurement of insulin-like growth factor I (IGF-I) responsiveness of fibroblasts of children with short stature: identification of a patient with IGF-I resistance. J Clin Endocrinol Metab. 1987;64(3):501–7.PubMedCrossRefGoogle Scholar
  196. 196.
    Lanes R, et al. Dwarfism associated with normal serum growth hormone and increased bioassayable, receptorassayable, and immunoassayable somatomedin. J Clin Endocrinol Metab. 1980;50(3):485–8.PubMedCrossRefGoogle Scholar
  197. 197.
    Barreca T, et al. Evaluation of anterior pituitary function in patients with posttraumatic diabetes insipidus. J Clin Endocrinol Metab. 1980;51(6):1279–82.PubMedCrossRefGoogle Scholar
  198. 198.
    Yamanaka C, et al. Acquired growth hormone deficiency due to pituitary stalk transection after head trauma in childhood. Eur J Pediatr. 1993;152(2):99–101.PubMedCrossRefGoogle Scholar
  199. 199.
    Craft WH, Underwoood LE, Van Wyk JJ. High incidence of perinatal insult in children with idiopathic hypopituitarism. J Pediatr. 1980;96(3 Pt 1):397–402.PubMedCrossRefGoogle Scholar
  200. 200.
    Cruikshank DP. Breech presentation. Clin Obstet Gynecol. 1986;29(2):255–63.PubMedCrossRefGoogle Scholar
  201. 201.
    Dunger DB, et al. The frequency and natural history of diabetes insipidus in children with Langerhans-cell histiocytosis. N Engl J Med. 1989;321(17):1157–62.PubMedCrossRefGoogle Scholar
  202. 202.
    Tien RD, et al. Thickened pituitary stalk on MR images in patients with diabetes insipidus and Langerhans cell histiocytosis. AJNR Am J Neuroradiol. 1990;11(4):703–8.PubMedGoogle Scholar
  203. 203.
    O’Sullivan RM, et al. Langerhans cell histiocytosis of hypothalamus and optic chiasm: CT and MR studies. J Comput Assist Tomogr. 1991;15(1):52–5.PubMedCrossRefGoogle Scholar
  204. 204.
    Freda PU, et al. Hypothalamic-pituitary sarcoidosis. Trends Endocrinol Metab. 1992;2:321–5.CrossRefGoogle Scholar
  205. 205.
    Bevan JS, et al. Reversible adrenocorticotropin deficiency due to probable autoimmune hypophysitis in a woman with postpartum thyroiditis. J Clin Endocrinol Metab. 1992;74(3):548–52.PubMedGoogle Scholar
  206. 206.
    Duranteau L, et al. Non-responsiveness of serum gonadotropins and testosterone to pulsatile GnRH in hemochromatosis suggesting a pituitary defect. Acta Endocrinol. 1993;128(4):351–4.PubMedGoogle Scholar
  207. 207.
    Oerter KE, et al. Multiple hormone deficiencies in children with hemochromatosis. J Clin Endocrinol Metab. 1993;76(2):357–61.PubMedGoogle Scholar
  208. 208.
    Pollack IF. Brain tumors in children. N Engl J Med. 1994;331(22):1500–7.PubMedCrossRefGoogle Scholar
  209. 209.
    Rappaport R, Brauner R. Growth and endocrine disorders secondary to cranial irradiation. Pediatr Res. 1989;25(6):561–7.PubMedCrossRefGoogle Scholar
  210. 210.
    Cohen LE. Endocrine late effects of cancer treatment. Endocrinol Metab Clin N Am. 2005;34(3):769–89. xi.CrossRefGoogle Scholar
  211. 211.
    Darzy KH, et al. Cranial irradiation and growth hormone neurosecretory dysfunction: a critical appraisal. J Clin Endocrinol Metab. 2007;92(5):1666–72.PubMedCrossRefGoogle Scholar
  212. 212.
    Clayton PE, Shalet SM. Dose dependency of time of onset of radiation-induced growth hormone deficiency. J Pediatr. 1991;118(2):226–8.PubMedCrossRefGoogle Scholar
  213. 213.
    Shalet SM. Growth and endocrine sequelae following the treatment of childhood cancer. In: Brook CGD, editor. Clinical paediatric endocrinology. Oxford: Blackwell Science Ltd; 1995. p. 383–96.Google Scholar
  214. 214.
    Shalet SM, et al. Effect of spinal irradiation on growth. Arch Dis Child. 1987;62(5):461–4.PubMedPubMedCentralCrossRefGoogle Scholar
  215. 215.
    Shulman DI. Growth hormone therapy: an update. Contemp Pediatr. 1998;15(8):95–100.Google Scholar
  216. 216.
    Gluckman PD, et al. Congenital idiopathic growth hormone deficiency associated with prenatal and early postnatal growth failure. The International Board of the Kabi Pharmacia International Growth Study. J Pediatr. 1992;121(6):920–3.PubMedCrossRefGoogle Scholar
  217. 217.
    Wabitsch M, Heinze E. Body fat in GH-deficient children and the effect of treatment. Horm Res. 1993;40(1–3):5–9.PubMedCrossRefGoogle Scholar
  218. 218.
    Growth Hormone Research Society. Consensus guidelines for the diagnosis and treatment of growth hormone (GH) deficiency in childhood and adolescence: summary statement of the GH Research Society. GH Research Society. J Clin Endocrinol Metab. 2000;85(11):3990–3.Google Scholar
  219. 219.
    Adan L, Souberbielle JC, Brauner R. Diagnostic markers of permanent idiopathic growth hormone deficiency. J Clin Endocrinol Metab. 1994;78(2):353–8.PubMedGoogle Scholar
  220. 220.
    Ranke MB, et al. Significance of basal IGF-I, IGFBP-3 and IGFBP-2 measurements in the diagnostics of short stature in children. Horm Res. 2000;54(2):60–8.PubMedGoogle Scholar
  221. 221.
    Juul A, Skakkebaek NE. Prediction of the outcome of growth hormone provocative testing in short children by measurement of serum levels of insulin-like growth factor I and insulin-like growth factor binding protein 3. J Pediatr. 1997;130(2):197–204.PubMedCrossRefGoogle Scholar
  222. 222.
    Tillmann V, et al. Biochemical tests in the diagnosis of childhood growth hormone deficiency. J Clin Endocrinol Metab. 1997;82(2):531–5.PubMedGoogle Scholar
  223. 223.
    Reiter EO, Lovinger RD. The use of a commercially available somatomedin-C radioimmunoassay in patients with disorders of growth. J Pediatr. 1981;99(5):720–4.PubMedCrossRefGoogle Scholar
  224. 224.
    Martin JL, Baxter RC. Insulin-like growth factor-binding protein from human plasma. Purification and characterization. J Biol Chem. 1986;261(19):8754–60.PubMedGoogle Scholar
  225. 225.
    Blum WF, et al. A specific radioimmunoassay for the growth hormone (GH)-dependent somatomedin-binding protein: its use for diagnosis of GH deficiency. J Clin Endocrinol Metab. 1990;70(5):1292–8.PubMedCrossRefGoogle Scholar
  226. 226.
    Hasegawa Y, et al. Usefulness and limitation of measurement of insulin-like growth factor binding protein-3 (IGFBP-3) for diagnosis of growth hormone deficiency. Endocrinol Jpn. 1992;39(6):585–91.PubMedCrossRefGoogle Scholar
  227. 227.
    Sklar C, et al. Abnormalities of the thyroid in survivors of Hodgkin’s disease: data from the Childhood Cancer Survivor Study. J Clin Endocrinol Metab. 2000;85(9):3227–32.PubMedGoogle Scholar
  228. 228.
    Cianfarani S, et al. Height velocity and IGF-I assessment in the diagnosis of childhood onset GH insufficiency: do we still need a second GH stimulation test? Clin Endocrinol. 2002;57(2):161–7.CrossRefGoogle Scholar
  229. 229.
    Shalet SM, et al. The diagnosis of growth hormone deficiency in children and adults. Endocr Rev. 1998;19(2):203–23.PubMedCrossRefGoogle Scholar
  230. 230.
    Fass B, Lippe BM, Kaplan SA. Relative usefulness of three growth hormone stimulation screening tests. Am J Dis Child. 1979;133(9):931–3.PubMedGoogle Scholar
  231. 231.
    Penny R, Blizzard RM, Davis WT. Sequential arginine and insulin tolerance tests on the same day. J Clin Endocrinol Metab. 1969;29(11):1499–501.PubMedCrossRefGoogle Scholar
  232. 232.
    Loche S, et al. Results of early reevaluation of growth hormone secretion in short children with apparent growth hormone deficiency. J Pediatr. 2002;140(4):445–9.PubMedCrossRefGoogle Scholar
  233. 233.
    Maghnie M, et al. Growth hormone (GH) deficiency (GHD) of childhood onset: reassessment of GH status and evaluation of the predictive criteria for permanent GHD in young adults. J Clin Endocrinol Metab. 1999;84(4):1324–8.PubMedPubMedCentralCrossRefGoogle Scholar
  234. 234.
    Secco A, et al. Reassessment of the growth hormone status in young adults with childhood-onset growth hormone deficiency: reappraisal of insulin tolerance testing. J Clin Endocrinol Metab. 2009;94(11):4195–204.PubMedCrossRefGoogle Scholar
  235. 235.
    Carel JC, et al. Growth hormone testing for the diagnosis of growth hormone deficiency in childhood: a population register-based study. J Clin Endocrinol Metab. 1997;82(7):2117–21.PubMedCrossRefGoogle Scholar
  236. 236.
    Popii V, Baumann G. Laboratory measurement of growth hormone. Clin Chim Acta. 2004;350(1–2):1–16.PubMedCrossRefGoogle Scholar
  237. 237.
    Grimberg A, Kutikov JK, Cucchiara AJ. Sex differences in patients referred for evaluation of poor growth. J Pediatr. 2005;146(2):212–6.PubMedPubMedCentralCrossRefGoogle Scholar
  238. 238.
    Deller JJ Jr, et al. Growth hormone response patterns to sex hormone administration in growth retardation. Am J Med Sci. 1970;259(4):292–7.PubMedCrossRefGoogle Scholar
  239. 239.
    Martin LG, Clark JW, Connor TB. Growth hormone secretion enhanced by androgens. J Clin Endocrinol Metab. 1968;28(3):425–8.PubMedCrossRefGoogle Scholar
  240. 240.
    Grimberg A, et al. Guidelines for growth hormone and insulin-like growth factor-I treatment in children and adolescents: growth hormone deficiency, idiopathic short stature, and primary insulin-like growth factor-I deficiency. Horm Res Paediatr. 2016;86(6):361–97.PubMedCrossRefGoogle Scholar
  241. 241.
    Wetterau LA. The pros and cons of sex steroid priming in growth hormone stimulation testing. J Pediatr Endocrinol Metab. 2012;25(11–12):1049–55.PubMedGoogle Scholar
  242. 242.
    Marin G, et al. The effects of estrogen priming and puberty on the growth hormone response to standardized treadmill exercise and arginine-insulin in normal girls and boys. J Clin Endocrinol Metab. 1994;79(2):537–41.PubMedGoogle Scholar
  243. 243.
    Stanley TL, et al. Effect of body mass index on peak growth hormone response to provocative testing in children with short stature. J Clin Endocrinol Metab. 2009;94(12):4875–81.PubMedPubMedCentralCrossRefGoogle Scholar
  244. 244.
    Argente J, et al. Multiple endocrine abnormalities of the growth hormone and insulin-like growth factor axis in prepubertal children with exogenous obesity: effect of short- and long-term weight reduction. J Clin Endocrinol Metab. 1997;82(7):2076–83.PubMedGoogle Scholar
  245. 245.
    Zadik Z, et al. Reproducibility of growth hormone testing procedures: a comparison between 24-hour integrated concentration and pharmacological stimulation. J Clin Endocrinol Metab. 1990;71(5):1127–30.PubMedCrossRefGoogle Scholar
  246. 246.
    Bercu BB, et al. Growth hormone (GH) provocative testing frequently does not reflect endogenous GH secretion. J Clin Endocrinol Metab. 1986;63(3):709–16.PubMedCrossRefGoogle Scholar
  247. 247.
    Spiliotis BE, et al. Growth hormone neurosecretory dysfunction. A treatable cause of short stature. JAMA. 1984;251(17):2223–30.PubMedCrossRefGoogle Scholar
  248. 248.
    Rose SR, et al. The advantage of measuring stimulated as compared with spontaneous growth hormone levels in the diagnosis of growth hormone deficiency. N Engl J Med. 1988;319:201–7.PubMedCrossRefGoogle Scholar
  249. 249.
    Lanes R. Diagnostic limitations of spontaneous growth hormone measurements in normally growing prepubertal children. Am J Dis Child. 1989;143(11):1284–6.PubMedGoogle Scholar
  250. 250.
    Greulich WW, Pyle SI. Radiographic atlas of skeletal development of the hand and wrist, vol. 2. Stanford: Stanford University Press; 1959.Google Scholar
  251. 251.
    Tanner JM, et al. Assessment of skeletal maturity and prediction of adult height (TW2 method). New York: Academic Press; 1975.Google Scholar
  252. 252.
    Vogiatzi MG, Copeland KC. The short child. Pediatr Rev. 1998;19(3):92–9.PubMedCrossRefGoogle Scholar
  253. 253.
    Bayley N, Pinneau SR. Tables for predicting adult height from skeletal age: revised for use with the Greulich-Pyle hand standards. J Pediatr. 1952;40(4):423–41.PubMedCrossRefGoogle Scholar
  254. 254.
    Shulman DI, Bercu BB. Abstract 1079: predicted heights in children with growth retardation and bone age delay following 1 to 3 years of growth hormone therapy. In 72nd Annual Meeting of the Endocrine Society, 1990.Google Scholar
  255. 255.
    Roche AF, Wainer H, Thissen D. The RWT method for the prediction of adult stature. Pediatrics. 1975;56(6):1027–33.PubMedGoogle Scholar
  256. 256.
    Khamis HJ, Roche AF. Predicting adult stature without using skeletal age: the Khamis-Roche method. Pediatrics. 1994;94(4 Pt 1):504–7.PubMedGoogle Scholar
  257. 257.
    Topor LS, et al. Variation in methods of predicting adult height for children with idiopathic short stature. Pediatrics. 2010;126(5):938–44.PubMedPubMedCentralCrossRefGoogle Scholar
  258. 258.
    Hamilton J, Blaser S, Daneman D. MR imaging in idiopathic growth hormone deficiency. AJNR Am J Neuroradiol. 1998;19(9):1609–15.PubMedGoogle Scholar
  259. 259.
    Ranke MB, Lindberg A. Predicting growth in response to growth hormone treatment. Growth Hormon IGF Res. 2009;19(1):1–11.CrossRefGoogle Scholar
  260. 260.
    Ranke MB, et al. Derivation and validation of a mathematical model for predicting the response to exogenous recombinant human growth hormone (GH) in prepubertal children with idiopathic GH deficiency. KIGS International Board. Kabi Pharmacia International Growth Study. J Clin Endocrinol Metab. 1999;84(4):1174–83.PubMedCrossRefGoogle Scholar
  261. 261.
    Kristrom B, et al. Growth hormone (GH) dosing during catch-up growth guided by individual responsiveness decreases growth response variability in prepubertal children with GH deficiency or idiopathic short stature. J Clin Endocrinol Metab. 2009;94(2):483–90.PubMedCrossRefGoogle Scholar
  262. 262.
    Cohen P, et al. Insulin growth factor-based dosing of growth hormone therapy in children: a randomized, controlled study. J Clin Endocrinol Metab. 2007;92(7):2480–6.PubMedCrossRefGoogle Scholar
  263. 263.
    Bakker B, et al. Height velocity targets from the national cooperative growth study for first-year growth hormone responses in short children. J Clin Endocrinol Metab. 2008;93(2):352–7.PubMedCrossRefGoogle Scholar
  264. 264.
    Ranke MB, Lindberg A. Observed and predicted growth responses in prepubertal children with growth disorders: guidance of growth hormone treatment by empirical variables. J Clin Endocrinol Metab. 2010;95(3):1229–37.PubMedCrossRefGoogle Scholar
  265. 265.
    Blethen SL, et al. Safety of recombinant deoxyribonucleic acid-derived growth hormone: The National Cooperative Growth Study experience. J Clin Endocrinol Metab. 1996;81(5):1704–10.PubMedGoogle Scholar
  266. 266.
    Wassenaar MJ, et al. Impact of the exon 3-deleted growth hormone (GH) receptor polymorphism on baseline height and the growth response to recombinant human GH therapy in GH-deficient (GHD) and non-GHD children with short stature: a systematic review and meta-analysis. J Clin Endocrinol Metab. 2009;94(10):3721–30.PubMedCrossRefGoogle Scholar
  267. 267.
    Kaufman FR, Sy JP. Regular monitoring of bone age is useful in children treated with growth hormone. Pediatrics. 1999;104(4 Pt 2):1039–42.PubMedGoogle Scholar
  268. 268.
    Wilson DM. Regular monitoring of bone age is not useful in children treated with growth hormone. Pediatrics. 1999;104(4 Pt 2):1036–9.PubMedGoogle Scholar
  269. 269.
    Crock PA, et al. Benign intracranial hypertension and recombinant growth hormone therapy in Australia and New Zealand. Acta Paediatr. 1998;87(4):381–6.PubMedCrossRefGoogle Scholar
  270. 270.
    Darendeliler F, Karagiannis G, Wilton P. Headache, idiopathic intracranial hypertension and slipped capital femoral epiphysis during growth hormone treatment: a safety update from the KIGS database. Horm Res. 2007;68(Suppl 5):41–7.PubMedGoogle Scholar
  271. 271.
    Bell J, et al. Long-term safety of recombinant human growth hormone in children. J Clin Endocrinol Metab. 2010;95(1):167–77.PubMedCrossRefGoogle Scholar
  272. 272.
    Allen DB, et al. GH safety workshop position paper: a critical appraisal of recombinant human GH therapy in children and adults. Eur J Endocrinol. 2016;174(2):P1–9.PubMedCrossRefGoogle Scholar
  273. 273.
    Holly JM, Gunnell DJ, Davey Smith G. Growth hormone, IGF-I and cancer. Less intervention to avoid cancer? More intervention to prevent cancer? J Endocrinol. 1999;162(3):321–30.PubMedCrossRefGoogle Scholar
  274. 274.
    Wilton P. Adverse events during GH treatment: 10 years’ experience in KIGS, a pharmacoepidemiological survey. In: Ranke MB, Wilton P, editors. Growth hormone therapy in KIGS – 10 years’ experience. Heidelberg: Johann Ambrosius Barth Verlag; 1999. p. 349–64.Google Scholar
  275. 275.
    Moshang T Jr, et al. Brain tumor recurrence in children treated with growth hormone: the National Cooperative Growth Study experience. J Pediatr. 1996;128(5 Pt 2):S4–7.PubMedCrossRefGoogle Scholar
  276. 276.
    Ergun-Longmire B, et al. Growth hormone treatment and risk of second neoplasms in the childhood cancer survivor. J Clin Endocrinol Metab. 2006;91(9):3494–8.PubMedCrossRefGoogle Scholar
  277. 277.
    Wyatt D. Melanocytic nevi in children treated with growth hormone. Pediatrics. 1999;104(4 Pt 2):1045–50.PubMedGoogle Scholar
  278. 278.
    Carel JC, et al. Long-term mortality after recombinant growth hormone treatment for isolated growth hormone deficiency or childhood short stature: preliminary report of the French SAGhE study. J Clin Endocrinol Metab. 2012;97(2):416–25.PubMedCrossRefGoogle Scholar
  279. 279.
    Poidvin A, et al. Growth hormone treatment for childhood short stature and risk of stroke in early adulthood. Neurology. 2014;83(9):780–6.PubMedCrossRefGoogle Scholar
  280. 280.
    Savendahl L, et al. Long-term mortality and causes of death in isolated GHD, ISS, and SGA patients treated with recombinant growth hormone during childhood in Belgium, The Netherlands, and Sweden: preliminary report of 3 countries participating in the EU SAGhE study. J Clin Endocrinol Metab. 2012;97(2):E213–7.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Carmen L. Soto-Rivera
    • 1
  • Christopher J. Romero
    • 2
  • Laurie E. Cohen
    • 1
  1. 1.Division of EndocrinologyBoston Children’s Hospital, Harvard Medical SchoolBostonUSA
  2. 2.Division of Pediatric Endocrinology and DiabetesIcahn School of Medicine at Mount SinaiNew YorkUSA

Personalised recommendations