Advertisement

Using Statistical-Model-Checking-Based Simulation for Evaluating the Robustness of a Production Schedule

  • Sara Himmiche
  • Alexis Aubry
  • Pascale Marangé
  • Marie Duflot-Kremer
  • Jean-François Pétin
Chapter
Part of the Studies in Computational Intelligence book series (SCI, volume 762)

Abstract

Industry 4.0 implies new scheduling problems linked to the optimal using of flexible resources and to mass customisation of products. In this context, first research results show that Discrete Event Systems models and tools are a relevant alternative to the classical approaches for modelling scheduling problems and for solving them. Moreover, the challenges of the Industry 4.0 mean taking into account the uncertainties linked to the mass customisation (volume and mix of the demand) but also to the states of the resources (failures, operation durations, ...). The goal of this paper is to show how it is possible to use the simulation based on statistical model checking for taking into account these uncertainties and for evaluating the robustness of a given schedule.

Keywords

Statistical model checking Production schedule Robustness Stochastic timed automata 

References

  1. 1.
    Kobetski, A., Fabian, M.: Time-optimal coordination of flexible manufacturing systems using deterministic finite automata and mixed integer linear programming. J. Discr. Event Dyn. Syst. Theor. Appl. 19(3), 287–315 (2009)Google Scholar
  2. 2.
    Panek, S., Engell, S., Stursberg, O.: Scheduling and planning with timed automata. In: 16th European Symposium on Computer Aided Process Engineering and 9th International Symposium on Process Systems Engineering, pp. 1973–1978. Elsevier (2006)Google Scholar
  3. 3.
    Billaut, J.C., Moukrim, A., Sanlaville, E.: Flexibility and robustness in scheduling. ISTE (2010).  https://doi.org/10.1002/9780470611432.ch1
  4. 4.
    Behrmann, G., Brinksma, E., Hendriks, M., Mader, A.: Production scheduling by reachability analysis—a case study. International Parallel and Distributed Processing Symposium (2005)Google Scholar
  5. 5.
    Marangé, P., Aubry, A., Pétin, J.F.: Ordonnancement d’ateliers à partir de patrons de modélisation basés sur des automates communicants. In: 11th International Conference on Modeling, Optimization and Simulation. Montréal, Canada (2016)Google Scholar
  6. 6.
    Subbiah, S., Engell, S.: Short-term scheduling of multi-product batch plants with sequence-dependent changeovers using timed automata models. In: 20th European Symposium on Computer Aided Process Engineering, 28, pp. 1201–1206. Elsevier (2010)Google Scholar
  7. 7.
    Cassandras, C.G., Lafortune, S.: Introduction to discrete event systems, 2nd edn. Springer (2008)Google Scholar
  8. 8.
    Kwiatkowska, M., Norman, G., Parker, D., Sproston, J.: Performance analysis of probabilistic timed automata using digital clocks. Formal Methods Syst. Des. (2006)Google Scholar
  9. 9.
    Ballarini, P., Djafri, H., Duflot, M., Haddad, S., Pekergin, N.: Petri nets compositional modelling and verification of flexible manufacturing systems. In: Proceedings of the 7th Conference on Automation Science and Engineering (2011)Google Scholar
  10. 10.
    Kritzinger, P., Bause, F.: Stochastic Petri nets—An Introduction to the Theory. Vieweg + Teubner (2002)Google Scholar
  11. 11.
    Plateau, B., Atif, K.: Stochastic automata network of modeling parallel systems. IEEE Trans. Softw. Eng. 17(10), 1093–1108 (1991)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Stewart, W.J., Atif, K., Plateau, B.: The numerical solution of stochastic automata networks. Eur. J. Operat. Res. (1995)Google Scholar
  13. 13.
    David, A., Larsen, K.G., Legay, A., Mikučionis, M., Poulsen, D.B.: Uppaal SMC tutorial. Int. J. Softw. Tools Technol. Transfer 17(4), 397–415 (2015)Google Scholar
  14. 14.
    Alur, R., Dill, D.: A theory of timed automata. Theor. Comput. Sci. 126(2), 183–235 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Behrmann, G., David, A., Larsen, K.: A tutorial on uppaal. In: Proceedings of Formal Methods for the Design of Real-Time Systems, No. 3185 in Lecture Notes in Computer Science, pp. 200–236. Springer (2004)Google Scholar
  16. 16.
    Himmiche, S., Aubry, A., Marangé, P., Pétin, J.F.: Modeling flexible workshops scheduling problems: evaluating a timed automata based approach versus MILP. In: 20th World Congress of the International Federation of Automatic Control. Toulouse, France Accepted (2017)Google Scholar
  17. 17.
    Giard, V.: Gestion de la production et des flux: avec CD livre électronique + Logiciels + Animations. Economica (2003)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Sara Himmiche
    • 1
  • Alexis Aubry
    • 1
  • Pascale Marangé
    • 1
  • Marie Duflot-Kremer
    • 2
  • Jean-François Pétin
    • 1
  1. 1.Université de Lorraine, CNRS, CRAN, UMR 7039Vandœuvre-lès-Nancy CedexFrance
  2. 2.Université de Lorraine, CNRS, Inria, LORIANancyFrance

Personalised recommendations