Advertisement

Proportional Reliability of Agent-Oriented Software Engineering for the Application of Cyber Physical Production Systems

  • Luis Alberto Cruz Salazar
  • Hang Li
Chapter
Part of the Studies in Computational Intelligence book series (SCI, volume 762)

Abstract

Cyber Physical Production System (CPPS) is one of the most significant concepts of the Industry 4.0, which has attracted spread attention from both academic community and industry. It is widely accepted that the Industrial Internet of Things (I2oT) and advanced methodologies for manufacturing systems are essential factors to achieve CPPS. Among the methodologies, a class of agent-oriented methodologies is considered prevailing in the manufacturing scenarios. Thus, some promising methodologies are proposed based on agent-oriented architecture. However, most of these methodologies need to be further evaluated. This paper reviews the evolution of the software architecture and comes up with the requirements of the validation of these methodologies. According to the proposed requirements, the latest methodologies are analyzed and the future research roadmap is proposed.

Keywords

Agent-oriented software engineering CPPS Requirements specification Methodology evaluation Industry 4.0 

References

  1. 1.
    Borangiu, T.: Studies in Computational Intelligence 544 Service Orientation in Holonic and Multi-Agent Manufacturing and Robotics.  https://doi.org/10.1007/978-3-319-04735-5 (2015)
  2. 2.
    Morariu, O., Morariu, C., Borangiu, Th: Shop-floor resource virtualization layer with private cloud support. J. Intell. Manuf. 27(2), 447–462 (2014)CrossRefGoogle Scholar
  3. 3.
    Christensen, J.H.: Holonic Manufacturing System: Initial Architecture and Standards Directions, pp. 1–20 (1994)Google Scholar
  4. 4.
    Trentesaux, D.: Distributed control of production systems. Eng. Appl. Artif. Intell. 22, 971–978 (2009)CrossRefGoogle Scholar
  5. 5.
    Cruz Salazar, L.A.: Estructura de control para procesos de producción desde el paradigma de los sistemas holónicos de manufactura. Master thesis, Faculty of Electronics and Telecommunications, University of Cauca.  https://doi.org/10.13140/rg.2.2.29031.04007 (2017)
  6. 6.
    Mattik, I., Amorim, P., Günther, H.-O.: Hierarchical scheduling of continuous casters and hot strip mills in the steel industry: a block planning application. Int. J. Prod. Res. 7543, 1–16 (2013)Google Scholar
  7. 7.
    Chung, S.H., Chan, F.T.S., Chan, H.K.: A modified genetic algorithm approach for scheduling of perfect maintenance in distributed production scheduling. Eng. Appl. Artif. Intell. 22, 1005–1014 (2009)CrossRefGoogle Scholar
  8. 8.
    Zhang, M.T., et al.: Hierarchical capacity planning with reconfigurable kits in global semiconductor assembly and test manufacturing. IEEE Trans. Autom. Sci. Eng. 4, 543–552 (2007)CrossRefGoogle Scholar
  9. 9.
    Wannagat, A., Vogel-Heuser, B.: Agent oriented software-development for networked embedded systems with real time and dependability requirements in the domain of automation. In: Proceedings of 17th World Congress IFAC, pp. 4144–4149 (2008)Google Scholar
  10. 10.
    Saumeth, C.K.J., Pinilla, T.F., Fernández A.A., Muñoz, A.D.J., Cruz Salazar, L.A.: Sistema Ciber-Físico de una CNC para la producción de circuitos impresos. In 4th Congreso Internacional de Ingeniería Mecatrónica y Automatización - CIIMA’15, pp. 154–155, Fondo Editorial EIA (2015)Google Scholar
  11. 11.
    Rüßmann, M., et al.: Industry 4.0. The Future of Productivity and Growth in Manufacturing. Boston Consulting, pp. 1–5 (2015)Google Scholar
  12. 12.
    Catalán, C., Serna, F., Blesa, A.: Industria 4.0 en el Grado de Ingeniería Electrónica y Automática, Actas las XXI Jornadas la Enseñanza Univ. Informática, pp. 327–332 (2015)Google Scholar
  13. 13.
    Wang, L., Haghighi, A.: Combined strength of holons, agents and function blocks in cyber-physical systems. J. Manuf. Syst. 40, 25–34 (2016)CrossRefGoogle Scholar
  14. 14.
    Beydoun, G., Low, G., Tran, N., Bogg, P.: Development of a peer-to-peer information sharing system using ontologies. Expert Syst. Appl. 38, 9352–9364 (2011)CrossRefGoogle Scholar
  15. 15.
    Briickner, S., Wyns, J., Peeterst, P., Kollingbaum, M.: Designing Agents for Manufacturing Control (1998)Google Scholar
  16. 16.
    Bettenhausen, K., Kowalewski, S.: Cyber-Physical Systems : Chancen und Nutzen aus Sicht der Automation, VDI/VDE-Gesellschaft Mess- und Autom., pp. 1–12 (2013)Google Scholar
  17. 17.
    Zhang, Y., Mao, S., Yang, L.T., Chen, T.M.: National Science Foundation: Cyber-Physical Systems (CPS) Program Solicitation NSF 17-529 (2016)Google Scholar
  18. 18.
    Lee, E.A.: The past, present and future of cyber-physical systems: a focus on models. Sensors (Switzerland) 15, 4837–4869 (2015)CrossRefGoogle Scholar
  19. 19.
    Kornerup, J.: A vision for overcoming the challenges of building cyber-physical systems. In: National Science Foundation Workshop on Critical Physical Infrastructures, pp. 1–3 (2006)Google Scholar
  20. 20.
    McFarlane, D., Giannikas, V., Wong, A.C.Y., Harrison, M.: Product intelligence in industrial control: theory and practice. Annu. Rev. Control 37, 69–88 (2013)CrossRefGoogle Scholar
  21. 21.
    Lu, Y., Morris, K., Frechette, S.: Current Standards Landscape for Smart Manufacturing Systems.  https://doi.org/10.6028/nist.ir.8107 (2016)
  22. 22.
    Vogel-Heuser, B., Diedrich, C., Pantförder, D., Göhner, P.: Coupling heterogeneous production systems by a multi-agent based cyber-physical production system. In: Proceedings of 12th IEEE International Conference on Industrial Informatics, INDIN’14, pp. 713–719 (2014)Google Scholar
  23. 23.
    Leitão, P., et al.: Smart agents in industrial cyber physical systems. Proc. IEEE 104, 1086–1101 (2016)CrossRefGoogle Scholar
  24. 24.
    Ribeiro, L., Barata, J., Onori, M., Hoos, J.: Industrial agents for the fast deployment of evolvable assembly systems. Ind. Agents Emerg. Appl. Softw. Agents Ind. 301 (2015)Google Scholar
  25. 25.
    Dam, H.K., Winikoff, M.: Towards a next-generation AOSE methodology. Sci. Comput. Program. 78, 684–694 (2013)CrossRefGoogle Scholar
  26. 26.
    Case, D.M.: Engineering Complex Systems with Multigroup Agents (2015)Google Scholar
  27. 27.
    Vogel-Heuser, B., Fischer, J., Feldmann, S., Ulewicz, S., Rösch, S.: Modularity and architecture of PLC-based software for automated production systems: an analysis in industrial companies, p. 131. J. Syst, Softw (2017)Google Scholar
  28. 28.
    Dias-Ferreira, J., Ribeiro, L., Akillioglu, H., Neves, P., Onori, M.: BIOSOARM: a bio-inspired self-organising architecture for manufacturing cyber-physical shopfloors. J. Intell. Manuf. 1–24 (2016)Google Scholar
  29. 29.
    Trentesaux, D., Borangiu, T., Thomas, A.: Emerging ICT concepts for smart, safe and sustainable industrial systems. J. Comput. Ind., Editorial of Special Issue “Emerging ICT concepts for smart, safe and sustainable industrial systems”, 81, pp. 1–10 (2016)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Institute of Automation and Information SystemsTechnical University of MunichGarching near MunichGermany

Personalised recommendations