Anticoagulation in the Patient with Cancer

  • Simon Mantha
  • Dipti Gupta
  • Chadi Salmane
  • Mansour Khaddr
  • Gerald A. Soff
  • Richard Steingart
Chapter

Abstract

The association between malignant neoplasms and venous thromboembolism (VTE) is well recognized, and anticoagulation therapy is commonly administered in the oncological setting. The treatment approach to cancer-associated VTE differs substantially compared to the general population, as chronic low-molecular-weight heparin (LMWH) has been shown to be more effective than vitamin K antagonist (VKA). There are also several challenges specific to the cancer patient. These include an increased risk of bleeding, higher rates of anticoagulation failure, drug interactions, decreased oral intake, chemotherapy-induced thrombocytopenia, and cerebral metastases.

Most of the literature in the field concerns the use of LMWH for cancer-associated VTE. Data is accumulating about the use of direct oral anticoagulants (DOACs) in this setting. DOACs offer improved patient quality of life and reduced cost compared to LMWH, although no published randomized trial has directly compared these two classes of anticoagulants in patients with cancer.

Even though atrial fibrillation is by far the most common indication for anticoagulation in developed countries, there are little data about the best choice of agent when this arrhythmia occurs in cancer patients. It is unclear if the risk of ischemic stroke or systemic embolization is increased in the presence of malignancy, although the risk of bleeding is likely higher. Notably, VKA are still administered for the treatment of AF despite the difficulties inherent to cancer patients.

Keywords

Anticoagulation Cancer Low-molecular-weight heparin Vitamin K antagonist Direct oral anticoagulant Venous thromboembolism Atrial fibrillation Thrombocytopenia Nonbacterial thrombotic endocarditis 

References

  1. 1.
    Khorana AA, Streiff MB, Farge D, Mandala M, Debourdeau P, Cajfinger F, et al. Venous thromboembolism prophylaxis and treatment in cancer: a consensus statement of major guidelines panels and call to action. J Clin Oncol. 2009;27(29):4919–26.PubMedCentralPubMedGoogle Scholar
  2. 2.
    Dipasco PJ, Misra S, Koniaris LG, Moffat FL Jr. Thrombophilic state in cancer, part I: biology, incidence, and risk factors. J Surg Oncol. 2011;104(3):316–22.Google Scholar
  3. 3.
    Zwicker JI, Liebman HA, Neuberg D, Lacroix R, Bauer KA, Furie BC, et al. Tumor-derived tissue factor-bearing microparticles are associated with venous thromboembolic events in malignancy. Clin Cancer Res. 2009;15(22):6830–40.PubMedCentralPubMedGoogle Scholar
  4. 4.
    Hurwitz HI, Saltz LB, Van Cutsem E, Cassidy J, Wiedemann J, Sirzén F, et al. Venous thromboembolic events with chemotherapy plus bevacizumab: a pooled analysis of patients in randomized phase II and III studies. J Clin Oncol. 2011;29(13):1757–64.Google Scholar
  5. 5.
    Van Cutsem E, Tabernero J, Lakomy R, Prenen H, Prausová J, Macarulla T, et al. Addition of aflibercept to fluorouracil, leucovorin, and irinotecan improves survival in a phase III randomized trial in patients with metastatic colorectal cancer previously treated with an oxaliplatin-based regimen. J Clin Oncol. 2012;30(28):3499–506.Google Scholar
  6. 6.
    Sonpavde G, Je Y, Schutz F, Galsky MD, Paluri R, Rosenberg JE, et al. Venous thromboembolic events with vascular endothelial growth factor receptor tyrosine kinase inhibitors: a systematic review and meta-analysis of randomized clinical trials. Crit Rev Oncol Hematol. 2013;87(1):80–9.PubMedGoogle Scholar
  7. 7.
    Petrelli F, Cabiddu M, Borgonovo K, Barni S. Risk of venous and arterial thromboembolic events associated with anti-EGFR agents: a meta-analysis of randomized clinical trials. Ann Oncol. 2012;23(7):1672–9.PubMedGoogle Scholar
  8. 8.
    Grace RF, Dahlberg SE, Neuberg D, Sallan SE, Connors JM, Neufeld EJ, et al. The frequency and management of asparaginase-related thrombosis in paediatric and adult patients with acute lymphoblastic leukaemia treated on Dana-Farber Cancer Institute consortium protocols. Br J Haematol. 2011;152(4):452–9.PubMedCentralPubMedGoogle Scholar
  9. 9.
    Fisher B, Costantino JP, Wickerham DL, Redmond CK, Kavanah M, Cronin WM, et al. Tamoxifen for prevention of breast cancer: report of the National Surgical Adjuvant Breast and Bowel Project P-1 study. J Natl Cancer Inst. 1998;90(18):1371–88.Google Scholar
  10. 10.
    Cuzick J, Forbes JF, Sestak I, Cawthorn S, Hamed H, Holli K, Howell A. International Breast Cancer Intervention Study I Investigators Long-term results of tamoxifen prophylaxis for breast cancer--96-month follow-up of the randomized IBIS-I trial. J Natl Cancer Inst. 2007;99(4):272–82.Google Scholar
  11. 11.
    McCaskill-Stevens W, Wilson J, Bryant J, Mamounas E, Garvey L, James J, et al. Contralateral breast cancer and thromboembolic events in African American women treated with tamoxifen. J Natl Cancer Inst. 2004;96(23):1762–9.Google Scholar
  12. 12.
    Amir E, Seruga B, Niraula S, Carlsson L, Ocaña A. Toxicity of adjuvant endocrine therapy in postmenopausal breast cancer patients: a systematic review and meta-analysis. J Natl Cancer Inst. 2011;103(17):1299–309.Google Scholar
  13. 13.
    Glasmacher A, Hahn C, Hoffmann F, Naumann R, Goldschmidt H, von Lilienfeld-Toal M, et al. A systematic review of phase-II trials of thalidomide monotherapy in patients with relapsed or refractory multiple myeloma. Br J Haematol. 2006;132(5):584–93.Google Scholar
  14. 14.
    Rajkumar SV, Blood E, Vesole D, Fonseca R, Greipp PR. Eastern Cooperative Oncology Group Phase III clinical trial of thalidomide plus dexamethasone compared with dexamethasone alone in newly diagnosed multiple myeloma: a clinical trial coordinated by the Eastern Cooperative Oncology Group. J Clin Oncol. 2006;24(3):431–6.Google Scholar
  15. 15.
    Palumbo A, Bringhen S, Caravita T, Merla E, Capparella V, Callea V, et al. Italian Multiple Myeloma Network, GIMEMA. Oral melphalan and prednisone chemotherapy plus thalidomide compared with melphalan and prednisone alone in elderly patients with multiple myeloma: randomised controlled trial. Lancet. 2006;367(9513):825–31.Google Scholar
  16. 16.
    Zangari M, Anaissie E, Barlogie B, Badros A, Desikan R, et al. Increased risk of deep-vein thrombosis in patients with multiple myeloma receiving thalidomide and chemotherapy. Blood. 2001;98(5):1614–5.Google Scholar
  17. 17.
    Yang X, Brandenburg NA, Freeman J, Salomon ML, Zeldis JB, Knight RD, Bwire R. Venous thromboembolism in myelodysplastic syndrome patients receiving lenalidomide: results from postmarketing surveillance and data mining techniques. Clin Drug Investig. 2009;29(3):161–71.Google Scholar
  18. 18.
    Rajkumar SV, Blood E. Lenalidomide and venous thrombosis in multiple myeloma. N Engl J Med. 2006;354(19):2079–80.Google Scholar
  19. 19.
    Rajkumar SV, Jacobus S, Callender N, et al. Phase III trial of lenalidomide plus high-dose dexamethasone versus lenalidomide plus low-dose dexamethasone in newly diagnosed multiple myeloma (E4A03): a trial coordinated by the Eastern Cooperative Oncology Group (abstract). J Clin Oncol. 2007;25(18 Suppl):LBA8025.Google Scholar
  20. 20.
    Lacy MQ, Hayman SR, Gertz MA, Dispenzieri A, Buadi F, Kumar S, et al. Pomalidomide (CC4047) plus low-dose dexamethasone as therapy for relapsed multiple myeloma. J Clin Oncol. 2009;27(30):5008–14.Google Scholar
  21. 21.
    Seng S, Liu Z, Chiu SK, Proverbs-Singh T, Sonpavde G, Choueiri TK, et al. Risk of venous thromboembolism in patients with cancer treated with Cisplatin: a systematic review and meta-analysis. J Clin Oncol. 2012;30(35):4416–26.Google Scholar
  22. 22.
    Falanga A, Marchetti M. Anticancer treatment and thrombosis. Thromb Res. 2012;129(3):353–9.Google Scholar
  23. 23.
    Khorana AA, Kuderer NM, Culakova E, Lyman GH, Francis CW. Development and validation of a predictive model for chemotherapy-associated thrombosis. Blood. 2008;111(10):4902–7.PubMedCentralPubMedGoogle Scholar
  24. 24.
    Lee AY, Levine MN, Baker RI, Bowden C, Kakkar AK, Prins M, et al. Low-molecular-weight heparin versus a coumarin for the prevention of recurrent venous thromboembolism in patients with cancer. N Engl J Med. 2003;349(2):146–53.Google Scholar
  25. 25.
    Deitcher SR, Kessler CM, Merli G, Rigas JR, Lyons RM, Fareed J, et al. Secondary prevention of venous thromboembolic events in patients with active cancer: enoxaparin alone versus initial enoxaparin followed by warfarin for a 180-day period. Clin Appl Thromb Hemost. 2006;12(4):389–96.Google Scholar
  26. 26.
    Hull RD, Pineo GF, Brant RF, Mah AF, Burke N, Dear R, et al. Long-term low-molecular-weight heparin versus usual care in proximal-vein thrombosis patients with cancer. Am J Med. 2006;119(12):1062–72.Google Scholar
  27. 27.
    Agnelli G, Buller HR, Cohen A, Gallus AS, Lee TC, Pak R, et al. Oral apixaban for the treatment of venous thromboembolism in cancer patients: results from the AMPLIFY trial. J Thromb Haemost. 2015;13(12):2187–91.Google Scholar
  28. 28.
    Meyer G, Marjanovic Z, Valcke J, Lorcerie B, Gruel Y, Solal-Celigny P, et al. Comparison of low-molecular-weight heparin and warfarin for the secondary prevention of venous thromboembolism in patients with cancer: a randomized controlled study. Arch Intern Med. 2002;162(15):1729–35.Google Scholar
  29. 29.
    Khorana AA, McCrae K, Milentijevic D, Fortier J, Nelson W, Laliberté F, et al. Current practice patterns and patient persistence on anticoagulant treatments for cancer-associated thrombosis (abstract). Blood. 2015;126:626.Google Scholar
  30. 30.
    Streiff MB. Cancer-associated venous thromboembolic disease, version 1.2016 of NCCN Guidelines. 2016. Available from: www.nccn.org.
  31. 31.
    Kearon C, Akl EA, Comerota AJ, Prandoni P, Bounameaux H, Goldhaber SZ, et al. Antithrombotic therapy for VTE disease: antithrombotic therapy and prevention of thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest. 2012;141(2 Suppl):e419S–94S.PubMedCentralPubMedGoogle Scholar
  32. 32.
    Kearon C, Akl EA, Ornelas J, Blaivas A, Jimenez D, Bounameaux H, et al. Antithrombotic therapy for VTE disease: CHEST guideline and expert panel report. Chest. 2016;149(2):315–52.PubMedCentralPubMedGoogle Scholar
  33. 33.
    Deng K, Parameswaran R, Soff BP, Soff GA. Incidental versus symptomatic pulmonary embolism in cancer patients: a multivariate analysis of recurrent VTE and mortality (abstract). Blood. 2012;120:2257.Google Scholar
  34. 34.
    Akl EA, Kahale L, Barba M, Neumann I, Labedi N, Terrenato I, et al. Anticoagulation for the long-term treatment of venous thromboembolism in patients with cancer. Cochrane Database Syst Rev. 2014;7:CD006650.Google Scholar
  35. 35.
    Carrier M, Le Gal G, Cho R, Tierney S, Rodger M, Lee AY. Dose escalation of low molecular weight heparin to manage recurrent venous thromboembolic events despite systemic anticoagulation in cancer patients. J Thromb Haemost. 2009;7(5):760–5.PubMedGoogle Scholar
  36. 36.
    Prandoni P, Lensing AW, Piccioli A, Bernardi E, Simioni P, Girolami B, et al. Recurrent venous thromboembolism and bleeding complications during anticoagulant treatment in patients with cancer and venous thrombosis. Blood. 2002;100(10):3484–8.Google Scholar
  37. 37.
    van Doormaal FF, Raskob GE, Davidson BL, Decousus H, Gallus A, Lensing AW, Piovella F, Prins MH, Büller HR. Treatment of venous thromboembolism in patients with cancer: subgroup analysis of the Matisse clinical trials. Thromb Haemost. 2009;101(4):762–9.PubMedGoogle Scholar
  38. 38.
    NIH. Cancer associated thrombosis, a pilot treatment study using rivaroxaban (CASTA-DIVA) NCT02746185. Available from: www.clinicaltrials.gov.
  39. 39.
    NIH. Apixaban or dalteparin in reducing blood clots in patients with cancer related venous thromboembolism NCT02585713.Google Scholar
  40. 40.
    van Es N, Di Nisio M, Bleker SM, Segers A, Mercuri MF, Schwocho L, et al. Edoxaban for treatment of venous thromboembolism in patients with cancer. Rationale and design of the Hokusai VTE-cancer study. Thromb Haemost. 2015;114(6):1268–76.Google Scholar
  41. 41.
    Schulman S, Goldhaber SZ, Kearon C, Kakkar AK, Schellong S, Eriksson H, et al. Treatment with dabigatran or warfarin in patients with venous thromboembolism and cancer. Thromb Haemost. 2015;114(1):150–7.Google Scholar
  42. 42.
    Prins MH, Lensing AW, Bauersachs R, van Bellen B, Bounameaux H, Brighton TA, et al. Oral rivaroxaban versus standard therapy for the treatment of symptomatic venous thromboembolism: a pooled analysis of the EINSTEIN-DVT and PE randomized studies. Thromb J. 2013;11(1):21.PubMedCentralPubMedGoogle Scholar
  43. 43.
    Raskob GE, van Es N, Segers A, Angchaisuksiri P, Oh D, Boda Z, et al. Edoxaban for venous thromboembolism in patients with cancer: results from a non-inferiority subgroup analysis of the Hokusai-VTE randomised, double-blind, double-dummy trial. Lancet Haematol. 2016;3(8):e379–87.Google Scholar
  44. 44.
    Bott-Kitslaar DM, Saadiq RA, McBane RD, Loprinzi CL, Ashrani AA, Ransone TR, et al. Efficacy and safety of rivaroxaban in patients with venous thromboembolism and active malignancy: a single-center registry. Am J Med. 2016;129(6):615–9.Google Scholar
  45. 45.
    Mantha S, Laube E, Miao Y, Sarasohn DM, Parameswaran R, Stefanik S, et al. Safe and effective use of rivaroxaban for treatment of cancer-associated venous thromboembolic disease: a prospective cohort study. J Thromb Thrombolysis. 2017;43(2):166–71.Google Scholar
  46. 46.
    Cambareri C, Yao X, Merl MY, Pham T, Lee AI. The use of oral anticoagulants for the treatment of venous thromboembolism in cancer patients (abstract). Blood. 2015;126:4728.Google Scholar
  47. 47.
    Chaudhury A, Balakrishnan A, Thai C, Holmstrom B, Jaglal MV. Evaluation of rivaroxaban and dalteparin in cancer associated thrombosis (abstract). Blood. 2015;126:432.Google Scholar
  48. 48.
    Win KZ, Wilson N, Stenehjem DD, Tanner N, Rodgers GM, Gilreath J. Effectiveness and safety of rivaroxaban in treatment of venous thromboembolism in cancer patients (abstract). Blood. 2015;126:2319.Google Scholar
  49. 49.
    Vedovati MC, Germini F, Agnelli G, Becattini C. Direct oral anticoagulants in patients with VTE and cancer: a systematic review and meta-analysis. Chest. 2015;147(2):475–83.PubMedGoogle Scholar
  50. 50.
    Sherwood MW, Nessel CC, Hellkamp AS, Mahaffey KW, Piccini JP, Suh EY, et al. Gastrointestinal bleeding in patients with atrial fibrillation treated with rivaroxaban or warfarin: ROCKET AF trial. J Am Coll Cardiol. 2015;66(21):2271–81.Google Scholar
  51. 51.
    Goodman SG, Wojdyla DM, Piccini JP, White HD, Paolini JF, Nessel CC, et al. Factors associated with major bleeding events: insights from the ROCKET AF trial (rivaroxaban once-daily oral direct factor Xa inhibition compared with vitamin K antagonism for prevention of stroke and embolism trial in atrial fibrillation). J Am Coll Cardiol. 2014;63(9):891–900.Google Scholar
  52. 52.
    Posch F, Konigsbrugge O, Zielinski C, Pabinger I, Ay C. Treatment of venous thromboembolism in patients with cancer: a network meta-analysis comparing efficacy and safety of anticoagulants. Thromb Res. 2015;136(3):582–9.Google Scholar
  53. 53.
    Agnelli G, Bolis G, Capussotti L, Scarpa RM, Tonelli F, Bonizzoni E, et al. A clinical outcome-based prospective study on venous thromboembolism after cancer surgery: the @RISTOS project. Ann Surg. 2006;243(1):89–95.PubMedCentralPubMedGoogle Scholar
  54. 54.
    Agnelli G, George DJ, Kakkar AK, Fisher W, Lassen MR, Mismetti P, et al. Semuloparin for thromboprophylaxis in patients receiving chemotherapy for cancer. N Engl J Med. 2012;366(7):601–9.Google Scholar
  55. 55.
    Maraveyas A, Waters J, Roy R, Fyfe D, Propper D, Lofts F, et al. Gemcitabine versus gemcitabine plus dalteparin thromboprophylaxis in pancreatic cancer. Eur J Cancer. 2012;48(9):1283–92.Google Scholar
  56. 56.
    Vadhan-Raj S, Zhou X, Varadhachary GR, Milind J, Fogelman D, Shroff R, et al. Randomized controlled trial of dalteparin for primary thromboprophylaxis for venous thromboembolism (VTE) in patients with advanced pancreatic cancer (APC): risk factors predictive of VTE (abstract). Blood. 2013;122:580.Google Scholar
  57. 57.
    Zwicker JI, Liebman HA, Bauer KA, Caughey T, Campigotto F, Rosovsky R, et al. Prediction and prevention of thromboembolic events with enoxaparin in cancer patients with elevated tissue factor-bearing microparticles: a randomized-controlled phase II trial (the Microtec study). Br J Haematol. 2013;160(4):530–7.Google Scholar
  58. 58.
    Pelzer U, Opitz B, Deutschinoff G, Stauch M, Reitzig PC, Hahnfeld S, et al. Efficacy of prophylactic low-molecular weight heparin for ambulatory patients with advanced pancreatic cancer: outcomes from the CONKO-004 trial. J Clin Oncol. 2015;33(18):2028–34.Google Scholar
  59. 59.
    Bach M, Bauersachs R. Spotlight on advances in VTE management: CALLISTO and EINSTEIN CHOICE. Thromb Haemost. 2016;116(Suppl. 2):S24–32.Google Scholar
  60. 60.
    Palumbo A, Rajkumar SV, Dimopoulos MA, Richardson PG, San Miguel J, Barlogie B, et al. Prevention of thalidomide- and lenalidomide-associated thrombosis in myeloma. Leukemia. 2008;22(2):414–23.Google Scholar
  61. 61.
    Collins R, Scrimgeour A, Yusuf S, Peto R. Reduction in fatal pulmonary embolism and venous thrombosis by perioperative administration of subcutaneous heparin. Overview of results of randomized trials in general, orthopedic, and urologic surgery. N Engl J Med. 1988;318(18):1162–73.Google Scholar
  62. 62.
    Nurmohamed MT, Rosendaal FR, Buller HR, Dekker E, Hommes DW, Vandenbroucke JP, et al. Low-molecular-weight heparin versus standard heparin in general and orthopaedic surgery: a meta-analysis. Lancet. 1992;340(8812):152–6.Google Scholar
  63. 63.
    Akl EA, Terrenato I, Barba M, Sperati F, Sempos EV, Muti P, et al. Low-molecular-weight heparin vs unfractionated heparin for perioperative thromboprophylaxis in patients with cancer: a systematic review and meta-analysis. Arch Intern Med. 2008;168(12):1261–9.Google Scholar
  64. 64.
    Herishanu Y, Misgav M, Kirgner I, Ben-Tal O, Eldor A, Naparstek E. Enoxaparin can be used safely in patients with severe thrombocytopenia due to intensive chemotherapy regimens. Leuk Lymphoma. 2004;45(7):1407–11.Google Scholar
  65. 65.
    Ibrahim RB, Peres E, Dansey R, Abidi MH, Abella EM, Gumma MM, et al. Safety of low-dose low-molecular-weight-heparins in thrombocytopenic stem cell transplantation patients: a case series and review of the literature. Bone Marrow Transplant. 2005;35(11):1071–7.Google Scholar
  66. 66.
    Mantha S, Miao Y, Wills J, Parameswaran R, Soff GA. Enoxaparin dose reduction for thrombocytopenia in patients with cancer: a quality assessment study. J Thromb Thrombolysis. 2017;43(4):514–8.PubMedCentralPubMedGoogle Scholar
  67. 67.
    Garcia-Rodriguez LA, Gaist D, Morton J, Cookson C, Gonzalez-Perez A. Antithrombotic drugs and risk of hemorrhagic stroke in the general population. Neurology. 2013;81(6):566–74.Google Scholar
  68. 68.
    Fang MC, Chang YC, Hylek EM, Rosand J, Greenberg SM, Go AS, et al. Advanced age, anticoagulation intensity, and risk for intracranial hemorrhage among patients taking warfarin for atrial fibrillation. Ann Intern Med. 2004;141(10):745–52.Google Scholar
  69. 69.
    Mandybur TI. Intracranial hemorrhage caused by metastatic tumors. Neurology. 1977;27(7):650–5.Google Scholar
  70. 70.
    Alvarado G, Noor R, Bassett R, Papadopoulos NE, Kim KB, Hwu WJ, et al. Risk of intracranial hemorrhage with anticoagulation therapy in melanoma patients with brain metastases. Melanoma Res. 2012;22(4):310–5.PubMedCentralPubMedGoogle Scholar
  71. 71.
    Donato J, Campigotto F, Uhlmann EJ, Coletti E, Neuberg D, Weber GM, et al. Intracranial hemorrhage in patients with brain metastases treated with therapeutic enoxaparin: a matched cohort study. Blood. 2015;126(4):494–9.PubMedCentralPubMedGoogle Scholar
  72. 72.
    Mantia C, Uhlmann E, Puligandla M, Neuberg DS, Weber GM, Zwicker JI. Intracranial hemorrhage in patients with primary brain tumors treated with therapeutic enoxaparin: a matched cohort study (abstract). Blood. 2016;128:142.Google Scholar
  73. 73.
    Boriani G, Pettorelli D. Atrial fibrillation burden and atrial fibrillation type: clinical significance and impact on the risk of stroke and decision making for long-term anticoagulation. Vasc Pharmacol. 2016;83:26–35.Google Scholar
  74. 74.
    Lee YJ, Park JK, Uhm JS, Kim JY, Pak HN, Lee MH, et al. Bleeding risk and major adverse events in patients with cancer on oral anticoagulation therapy. Int J Cardiol. 2016;203:372–8.Google Scholar
  75. 75.
    Farmakis D, Parissis J, Filippatos G. Insights into onco-cardiologyatrial fibrillation in cancer. J Am Coll Cardiol. 2014;63(10):945–53.Google Scholar
  76. 76.
    Cheng WL, Kao YH, Chen SA, Chen YJ. Pathophysiology of cancer therapy-provoked atrial fibrillation. Int J Cardiol. 2016;219:186–94.Google Scholar
  77. 77.
    Zamorano JL, Lancellotti P, Rodriguez Munoz D, Aboyans V, Asteggiano R, Galderisi M, et al. 2016 ESC Position Paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC Committee for Practice Guidelines: The Task Force for cancer treatments and cardiovascular toxicity of the European Society of Cardiology (ESC). Eur Heart J. 2016;37(36):2768–801.Google Scholar
  78. 78.
    Onaitis M, D’Amico T, Zhao Y, O’Brien S, Harpole D. Risk factors for atrial fibrillation after lung cancer surgery: analysis of the society of thoracic surgeons general thoracic surgery database. Ann Thorac Surg. 2010;90(2):368–74.Google Scholar
  79. 79.
    Guzzetti S, Costantino G, Vernocchi A, Sada S, Fundaro C. First diagnosis of colorectal or breast cancer and prevalence of atrial fibrillation. Intern Emerg Med. 2008;3(3):227–31.Google Scholar
  80. 80.
    O’Neal WT, Lakoski SG, Qureshi W, Judd SE, Howard G, Howard VJ, et al. Relation Between Cancer and Atrial Fibrillation (from the REasons for Geographic And Racial Differences in Stroke Study). Am J Cardiol. 2010;115(8):1090–4.Google Scholar
  81. 81.
    Conen D, Wong JA, Sandhu RK, et al. Risk of malignant cancer among women with new-onset atrial fibrillation. JAMA Cardiol. 2016;1(4):389–96.PubMedCentralPubMedGoogle Scholar
  82. 82.
    Melloni C, Shrader P, Carver J, Piccini J, Fonarow G, Ansell J, et al. Management and outcomes of patients with atrial fibrillation and cancer: The ORBIT-AF registry. Eur Heart J Qual Care Clin Outcomes. 2017;3(3):192–7.Google Scholar
  83. 83.
    Apostolakis S, Lane DA, Guo Y, Buller H, Lip GY. Performance of the HEMORR(2)HAGES, ATRIA, and HAS-BLED bleeding risk-prediction scores in patients with atrial fibrillation undergoing anticoagulation: the AMADEUS (evaluating the use of SR34006 compared to warfarin or acenocoumarol in patients with atrial fibrillation) study. J Am Coll Cardiol. 2012;60(9):861–7.Google Scholar
  84. 84.
    Gage BF, Waterman AD, Shannon W, Boechler M, Rich MW, Radford MJ. Validation of clinical classification schemes for predicting stroke: results from the National Registry of Atrial Fibrillation. JAMA. 2001;285(22):2864–70.PubMedCentralPubMedGoogle Scholar
  85. 85.
    Hart RG, Pearce LA, Aguilar MI. Meta-analysis: antithrombotic therapy to prevent stroke in patients who have nonvalvular atrial fibrillation. Ann Intern Med. 2007;146(12):857–67.Google Scholar
  86. 86.
    Olesen JB, Sorensen R, Hansen ML, Lamberts M, Weeke P, Mikkelsen AP, et al. Non-vitamin K antagonist oral anticoagulation agents in anticoagulant naive atrial fibrillation patients: Danish nationwide descriptive data 2011-2013. Europace. 2015;17(2):187–93.PubMedCentralPubMedGoogle Scholar
  87. 87.
    Steinberg B, Shrader P, Thomas L, Fonarow G, Hylek E, Ansell J, et al. Oral anticoagulant selection in community patients with new-onset atrial fibrillation: results from the ORBIT-AF registry (abstract). J Am Coll Cardiol. 2016;67(13_S):885.Google Scholar
  88. 88.
    January CT, Wann LS, Alpert JS, Calkins H, Cigarroa JE, Cleveland JJC, et al. 2014 AHA/ACC/HRS guideline for the management of patients with atrial fibrillation: executive summarya report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and the Heart Rhythm Society. J Am Coll Cardiol. 2014;64(21):2246–80.Google Scholar
  89. 89.
    Larsen TB, Nielsen PB, Skjoth F, Rasmussen LH, Lip GY. Non-vitamin K antagonist oral anticoagulants and the treatment of venous thromboembolism in cancer patients: a semi systematic review and meta-analysis of safety and efficacy outcomes. PLoS One. 2014;9(12):e114445.PubMedCentralPubMedGoogle Scholar
  90. 90.
    Laube ES, Yu A, Gupta D, Miao Y, Samedy P, Wills J, et al. Rivaroxaban for stroke prevention in patients with non-valvular atrial fibrillation and active cancer (abstract). Blood. 2016;128:2621.Google Scholar
  91. 91.
    Rooden CJ, Tesselaar ME, Osanto S, Rosendaal FR, Huisman MV. Deep vein thrombosis associated with central venous catheters - a review. J Thromb Haemost. 2005;3(11):2409–19.Google Scholar
  92. 92.
    King MM, Rasnake MS, Rodriguez RG, Riley NJ, Stamm JA. Peripherally inserted central venous catheter-associated thrombosis: retrospective analysis of clinical risk factors in adult patients. South Med J. 2006;99(10):1073–7.Google Scholar
  93. 93.
    Saber W, Moua T, Williams EC, Verso M, Agnelli G, Couban S, et al. Risk factors for catheter-related thrombosis (CRT) in cancer patients: a patient-level data (IPD) meta-analysis of clinical trials and prospective studies. J Thromb Haemost. 2011;9(2):312–9.PubMedCentralPubMedGoogle Scholar
  94. 94.
    O’Brien J, Paquet F, Lindsay R, Valenti D. Insertion of PICCs with minimum number of lumens reduces complications and costs. J Am Coll Radiol. 2013;10(11):864–8.Google Scholar
  95. 95.
    Laube ES, Mantha S, Samedy P, Wills J, Harnicar S, Soff GA. Treatment of central venous catheter-associated deep venous thrombosis in cancer patients with rivaroxaban. Am J Hematol. 2017;92(1):E9–E10.Google Scholar
  96. 96.
    Lopez JA, Ross RS, Fishbein MC, Siegel RJ. Nonbacterial thrombotic endocarditis: a review. Am Heart J. 1987;113(3):773–84.Google Scholar
  97. 97.
    Deppisch LM, Fayemi AO. Non-bacterial thrombotic endocarditis: clinicopathologic correlations. Am Heart J. 1976;92(6):723–9.Google Scholar
  98. 98.
    Gonzalez Quintela A, Candela MJ, Vidal C, Roman J, Aramburo P. Non-bacterial thrombotic endocarditis in cancer patients. Acta Cardiol. 1991;46(1):1–9.Google Scholar
  99. 99.
    el-Shami K, Griffiths E, Streiff M. Nonbacterial thrombotic endocarditis in cancer patients: pathogenesis, diagnosis, and treatment. Oncologist. 2007;12(5):518–23.Google Scholar
  100. 100.
    Dutta T, Karas MG, Segal AZ, Kizer JR. Yield of transesophageal echocardiography for nonbacterial thrombotic endocarditis and other cardiac sources of embolism in cancer patients with cerebral ischemia. Am J Cardiol. 2006;97(6):894–8.Google Scholar
  101. 101.
    Singhal AB, Topcuoglu MA, Buonanno FS. Acute ischemic stroke patterns in infective and nonbacterial thrombotic endocarditis a diffusion-weighted magnetic resonance imaging study. Stroke. 2002;33(5):1267–73.Google Scholar
  102. 102.
    Sievers B, Brandts B, Franken U, Trappe H-J. Cardiovascular magnetic resonance imaging demonstrates mitral valve endocarditis. Am J Med. 2003;115(8):681–2.Google Scholar
  103. 103.
    Schulte-Altedorneburg G, Nam E-M, Ritter M, Magyar T, Dittrich R, Csiba L, et al. On the origin of microembolic signals. J Neurol. 2003;250(9):1044–9.Google Scholar
  104. 104.
    Rogers LR, Cho ES, Kempin S, Posner JB. Cerebral infarction from non-bacterial thrombotic endocarditis. Clinical and pathological study including the effects of anticoagulation. Am J Med. 1987;83(4):746–56.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Simon Mantha
    • 1
  • Dipti Gupta
    • 1
  • Chadi Salmane
    • 1
  • Mansour Khaddr
    • 1
  • Gerald A. Soff
    • 1
  • Richard Steingart
    • 1
  1. 1.Department of MedicineMemorial Sloan Kettering Cancer CenterNew YorkUSA

Personalised recommendations