Vasodilatory Shock in the ICU: Perils, Pitfalls and Therapeutic Options

  • S. Vallabhajosyula
  • J. C. Jentzer
  • A. K. KhannaEmail author
Part of the Annual Update in Intensive Care and Emergency Medicine book series (AUICEM)


Circulatory failure is commonly seen in the intensive care unit (ICU) and manifests as cardiovascular instability. Shock is defined as hypotension leading to decreased organ perfusion and inadequate cellular oxygen utilization [1, 2]. Even brief periods of hypotension in the intraoperative period can lead to renal and myocardial injury [3]. The degree of hypotension leading to end organ dysfunction has been defined as a mean arterial pressure (MAP) of < 65 mmHg in the operating room [3]. The threshold MAP associated with adverse outcomes is as yet unclear in critically ill patients admitted to the ICU, and likely depends on the baseline blood pressure and other patient characteristics [4]. The most recent Surviving Sepsis Campaign Guidelines define this threshold using a MAP of < 65 mmHg [5]. Hypotension in critically ill patients is often multifactorial in etiology and is a consequence of pathological vasodilation, impaired cardiac performance, hypovolemia,...


  1. 1.
    Khanna A, English SW, Wang XS et al (2017) Angiotensin II for the treatment of vasodilatory shock. N Engl J Med 377:419–430CrossRefPubMedGoogle Scholar
  2. 2.
    Vincent J-L, De Backer D (2013) Circulatory shock. N Engl J Med 369:1726–1734CrossRefPubMedGoogle Scholar
  3. 3.
    Walsh M, Devereaux PJ, Garg AX et al (2013) Relationship between intraoperative mean arterial pressure and clinical outcomes after noncardiac surgery: toward an empirical definition of hypotension. Anesthesiology 119:507–515CrossRefPubMedGoogle Scholar
  4. 4.
    Asfar P, Meziani F, Hamel JF et al (2014) High versus low blood-pressure target in patients with septic shock. N Engl J Med 370:1583–1593CrossRefPubMedGoogle Scholar
  5. 5.
    Rhodes A, Evans LE, Alhazzani W et al (2017) Surviving Sepsis Campaign: international guidelines for management of sepsis and septic shock: 2016. Intensive Care Med 43:304–377CrossRefPubMedGoogle Scholar
  6. 6.
    Brown SM, Lanspa MJ, Jones JP et al (2013) Survival after shock requiring high-dose vasopressor therapy. Chest 143:664–671CrossRefPubMedGoogle Scholar
  7. 7.
    De Backer D, Biston P, Devriendt J et al (2010) Comparison of dopamine and norepinephrine in the treatment of shock. N Engl J Med 362:779–789CrossRefPubMedGoogle Scholar
  8. 8.
    Jentzer JC, Vallabhajosyula S, Khanna AK, Chawla LS, Busse LW, Kashani KB (2018) Management of refractory vasodilatory shock. Chest. (Jan 9, Epub ahead of print)CrossRefPubMedGoogle Scholar
  9. 9.
    Mekontso-Dessap A, Houel R, Soustelle C, Kirsch M, Thebert D, Loisance DY (2001) Risk factors for post-cardiopulmonary bypass vasoplegia in patients with preserved left ventricular function. Ann Thorac Surg 71:1428–1432CrossRefPubMedGoogle Scholar
  10. 10.
    Algarni KD, Maganti M, Yau TM (2011) Predictors of low cardiac output syndrome after isolated coronary artery bypass surgery: trends over 20 years. Ann Thorac Surg 92:1678–1684CrossRefPubMedGoogle Scholar
  11. 11.
    Kotecha A, Vallabhajosyula S, Coville HH, Kashani K (2017) Cardiorenal syndrome in sepsis: a narrative review. J Crit Care 43:122–127CrossRefPubMedGoogle Scholar
  12. 12.
    Vallabhajosyula S, Jentzer JC, Geske JB et al (2017) New-onset heart failure and mortality in hospital survivors of sepsis-related left ventricular dysfunction. Shock. (Jul 19, Epub ahead of print)CrossRefGoogle Scholar
  13. 13.
    Champion S, Belcour D, Vandroux D et al (2015) Stress (Tako-tsubo) cardiomyopathy in critically-ill patients. Eur Heart J Acute Cardiovasc Care 4:189–196CrossRefPubMedGoogle Scholar
  14. 14.
    Landesberg G, Jaffe AS, Gilon D et al (2014) Troponin elevation in severe sepsis and septic shock: the role of left ventricular diastolic dysfunction and right ventricular dilatation. Crit Care Med 42:790–800CrossRefPubMedGoogle Scholar
  15. 15.
    Leone M, Asfar P, Radermacher P, Vincent J-L, Martin C (2015) Optimizing mean arterial pressure in septic shock: a critical reappraisal of the literature. Crit Care 19:101CrossRefPubMedGoogle Scholar
  16. 16.
    Beesley SJ, Wilson EL, Lanspa MJ et al (2017) Relative bradycardia in patients with septic shock requiring vasopressor therapy. Crit Care Med 45:225–233CrossRefPubMedGoogle Scholar
  17. 17.
    Morelli A, Ertmer C, Westphal M et al (2013) Effect of heart rate control with esmolol on hemodynamic and clinical outcomes in patients with septic shock: a randomized clinical trial. JAMA 310:1683–1691CrossRefPubMedGoogle Scholar
  18. 18.
    Hamzaoui O, Georger JF, Monnet X et al (2010) Early administration of norepinephrine increases cardiac preload and cardiac output in septic patients with life-threatening hypotension. Crit Care 14:R142CrossRefPubMedGoogle Scholar
  19. 19.
    Boissier F, Razazi K, Seemann A et al (2017) Left ventricular systolic dysfunction during septic shock: the role of loading conditions. Intensive Care Med 43:633–642CrossRefPubMedGoogle Scholar
  20. 20.
    Kress JP (2010) The complex interplay between delirium, sepsis and sedation. Crit Care 14:164CrossRefPubMedGoogle Scholar
  21. 21.
    Khanna A, Mao G, Liu L et al (2018) Hypotension increases acute kidney injury, myocardial injury and mortality in surgical critical care. Crit Care Med 46:71 (abst)CrossRefGoogle Scholar
  22. 22.
    Mascha EJ, Yang D, Weiss S, Sessler DI (2015) Intraoperative mean arterial pressure variability and 30-day mortality in patients having noncardiac surgery. Anesthesiology 123:79–91CrossRefGoogle Scholar
  23. 23.
    Salmasi V, Maheshwari K, Yang D et al (2017) Relationship between intraoperative hypotension, defined by either reduction from baseline or absolute thresholds, and acute kidney and myocardial injury after noncardiac surgery: a retrospective cohort analysis. Anesthesiology 126:47–65CrossRefGoogle Scholar
  24. 24.
    Sessler DI, Meyhoff CS, Zimmerman NM et al (2017) Period-dependent associations between hypotension during and for 4 days after noncardiac surgery and a composite of myocardial infarction and death: A sub-study of the POISE-2 trial. Anesthesiology (Nov 21, Epub ahead of print)CrossRefPubMedCentralPubMedGoogle Scholar
  25. 25.
    Janssen van Doorn K, Verbrugghe W, Wouters K, Jansens H, Jorens PG (2014) The duration of hypotension determines the evolution of bacteremia-induced acute kidney injury in the intensive care unit. PLoS One 9:e114312CrossRefPubMedGoogle Scholar
  26. 26.
    Houwink AP, Rijkenberg S, Bosman RJ, van der Voort PH (2016) The association between lactate, mean arterial pressure, central venous oxygen saturation and peripheral temperature and mortality in severe sepsis: a retrospective cohort analysis. Crit Care 20:56CrossRefPubMedGoogle Scholar
  27. 27.
    Langenberg C, Wan L, Egi M, May CN, Bellomo R (2006) Renal blood flow in experimental septic acute renal failure. Kidney Int 69:1996–2002CrossRefGoogle Scholar
  28. 28.
    Wan L, Bagshaw SM, Langenberg C, Saotome T, May C, Bellomo R (2008) Pathophysiology of septic acute kidney injury: what do we really know? Crit Care Med 36(4 Suppl):S198–S203CrossRefPubMedGoogle Scholar
  29. 29.
    Donnelly J, Budohoski KP, Smielewski P, Czosnyka M (2016) Regulation of the cerebral circulation: bedside assessment and clinical implications. Crit Care 20:129CrossRefPubMedGoogle Scholar
  30. 30.
    Singh TD, O’Horo JC, Gajic O et al (2017) Risk factors and outcomes of critically ill patients with acute brain failure: a novel end point. J Crit Care 43:42–47CrossRefPubMedGoogle Scholar
  31. 31.
    Bassi E, Park M, Azevedo LC (2013) Therapeutic strategies for high-dose vasopressor-dependent shock. Crit Care Res Pract 2013:654708PubMedCentralPubMedGoogle Scholar
  32. 32.
    Cecconi M, De Backer D, Antonelli M et al (2014) Consensus on circulatory shock and hemodynamic monitoring. Task force of the European Society of Intensive Care Medicine. Intensive Care Med 40:1795–1815CrossRefPubMedGoogle Scholar
  33. 33.
    Kimmoun A, Novy E, Auchet T, Ducrocq N, Levy B (2015) Hemodynamic consequences of severe lactic acidosis in shock states: from bench to bedside. Crit Care 19:175CrossRefPubMedGoogle Scholar
  34. 34.
    Seymour CW, Gesten F, Prescott HC et al (2017) Time to treatment and mortality during mandated emergency care for sepsis. N Engl J Med 376:2235–2244CrossRefPubMedGoogle Scholar
  35. 35.
    Jentzer JC, Coons JC, Link CB, Schmidhofer M (2015) Pharmacotherapy update on the use of vasopressors and inotropes in the intensive care unit. J Cardiovasc Pharmacol Ther 20:249–260CrossRefPubMedGoogle Scholar
  36. 36.
    De Backer D, Aldecoa C, Njimi H, Vincent J-L (2012) Dopamine versus norepinephrine in the treatment of septic shock: a meta-analysis. Crit Care Med 40:725–730CrossRefPubMedGoogle Scholar
  37. 37.
    Levy B, Perez P, Perny J, Thivilier C, Gerard A (2011) Comparison of norepinephrine-dobutamine to epinephrine for hemodynamics, lactate metabolism, and organ function variables in cardiogenic shock. A prospective, randomized pilot study. Crit Care Med 39:450–455CrossRefPubMedGoogle Scholar
  38. 38.
    Russell JA (2011) Bench-to-bedside review: vasopressin in the management of septic shock. Crit Care 15:226CrossRefPubMedGoogle Scholar
  39. 39.
    Russell JA, Walley KR, Singer J et al (2008) Vasopressin versus norepinephrine infusion in patients with septic shock. N Engl J Med 358:877–887CrossRefPubMedGoogle Scholar
  40. 40.
    Gordon AC, Russell JA, Walley KR et al (2010) The effects of vasopressin on acute kidney injury in septic shock. Intensive Care Med 36:83–91CrossRefPubMedGoogle Scholar
  41. 41.
    Gordon AC, Mason AJ, Thirunavukkarasu N et al (2016) Effect of early vasopressin vs norepinephrine on kidney failure in patients with septic shock: The VANISH randomized clinical trial. JAMA 316:509–518CrossRefPubMedGoogle Scholar
  42. 42.
    Leone M, Albanese J, Delmas A, Chaabane W, Garnier F, Martin C (2004) Terlipressin in catecholamine-resistant septic shock patients. Shock 22:314–319CrossRefPubMedGoogle Scholar
  43. 43.
    Avni T, Lador A, Lev S, Leibovici L, Paul M, Grossman A (2015) Vasopressors for the treatment of septic shock: systematic review and meta-analysis. PLoS One 10:e129305CrossRefPubMedGoogle Scholar
  44. 44.
    Russell JA, Vincent J-L, Kjolbye AL et al (2017) Selepressin, a novel selective vasopressin V1A agonist, is an effective substitute for norepinephrine in a phase IIa randomized, placebo-controlled trial in septic shock patients. Crit Care 21:213CrossRefPubMedGoogle Scholar
  45. 45.
    Chawla LS, Busse L, Brasha-Mitchell E et al (2014) Intravenous angiotensin II for the treatment of high-output shock (ATHOS trial): a pilot study. Crit Care 18:534CrossRefPubMedGoogle Scholar
  46. 46.
    Annane D, Sebille V, Charpentier C et al (2002) Effect of treatment with low doses of hydrocortisone and fludrocortisone on mortality in patients with septic shock. JAMA 288:862–871CrossRefPubMedGoogle Scholar
  47. 47.
    Park JY, An JN, Jhee JH et al (2016) Early initiation of continuous renal replacement therapy improves survival of elderly patients with acute kidney injury: a multicenter prospective cohort study. Crit Care 20:260CrossRefPubMedGoogle Scholar
  48. 48.
    Marik PE, Khangoora V, Rivera R, Hooper MH, Catravas J (2017) Hydrocortisone, vitamin C, and thiamine for the treatment of severe sepsis and septic shock: a retrospective before-after study. Chest 151:1229–1238CrossRefPubMedGoogle Scholar
  49. 49.
    Park TK, Yang JH, Jeon K et al (2015) Extracorporeal membrane oxygenation for refractory septic shock in adults. Eur J Cardiothorac Surg 47:e68–e74CrossRefPubMedGoogle Scholar
  50. 50.
    Cheng A, Sun HY, Lee CW et al (2013) Survival of septic adults compared with nonseptic adults receiving extracorporeal membrane oxygenation for cardiopulmonary failure: a propensity-matched analysis. J Crit Care 28:532.e1–532.e10CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • S. Vallabhajosyula
    • 1
    • 2
  • J. C. Jentzer
    • 1
    • 2
  • A. K. Khanna
    • 3
    Email author
  1. 1.Department of Cardiovascular MedicineMayo ClinicRochesterUSA
  2. 2.Division of Pulmonary and Critical Care MedicineMayo ClinicRochesterUSA
  3. 3.Center for Critical Care, Anesthesiology Institute and Department of Outcomes ResearchCleveland ClinicClevelandUSA

Personalised recommendations