Advertisement

Colistin Dosing in Continuous Renal Replacement Therapy

  • P. M. HonoreEmail author
  • M. L. N. G. Malbrain
  • H. D. Spapen
Part of the Annual Update in Intensive Care and Emergency Medicine book series (AUICEM)

Introduction

Colistin is a multicomponent polypeptide antibiotic produced by strains of the Paenibacillus polymyxa bacteria [1]. It was abandoned from clinical use in the 1970s because of significant renal and neurological toxicity. Currently, colistin is increasingly proposed as a last resort treatment for severe multidrug‐resistant (MDR) Gram‐negative bacterial infections, particularly in the intensive care unit (ICU). Colistin has a relatively narrow spectrum but is very effective against Enterobacteriaceae (Escherichia coli, Klebsiella spp., Enterobacter spp., Citrobacter spp., Salmonella spp. and Shigella spp., including extended spectrum beta‐lactamase [ESBL], Klebsiella pneumoniae carbapenemase [KPC], verona integron‐encoded metallo‐β‐lactamase [VIM] and New Delhi metallo [NDM]‐1 producers), and MDR Pseudomonas aeruginosa, Acinetobacter baumannii, Stenotrophomonas maltophilia and Aeromonas spp. [2]. Resistance is rare and mediated by plasmid transfer between bacterial strains....

References

  1. 1.
    Falagas ME, Rafailidis PI (2008) Re-emergence of colistin in today’s world of multidrug-resistant organisms: personal perspectives. Expert Opin Investig Drugs 17:973–981CrossRefGoogle Scholar
  2. 2.
    Karaiskos I, Giamarellou H (2014) Multidrug-resistant and extensively drug-resistant Gram-negative pathogens: current and emerging therapeutic approaches. Expert Opin Pharmacother 15:1351–1370CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Kumarasamy KK, Toleman MA, Walsh TR et al (2010) Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study. Lancet Infect Dis 10:597–602CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Bergen PJ, Landersdorfer CB, Zhang J et al (2012) Pharmacokinetics and pharmacodynamics of ‘old’ polymyxins: what is new? Diagn Microbiol Infect Dis 74:213–223CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Gilbert B, Morrison C (2017) Evaluation of intraventricular colistin utilization: a case series. J Crit Care 40:161–163CrossRefGoogle Scholar
  6. 6.
    Landersdorfer CB, Nation RL (2015) Colistin: how should it be dosed for the critically ill? Semin Respir Crit Care Med 36:126–135CrossRefGoogle Scholar
  7. 7.
    Grégoire N, Aranzana-Climent V, Magréault S, Marchand S, Couet W (2017) Clinical pharmacokinetics and pharmacodynamics of colistin. Clin Pharmacokinet 56:1441–1460CrossRefGoogle Scholar
  8. 8.
    Plachouras D, Karvanen M, Friberg LE et al (2009) Population pharmacokinetic analysis of colistin methanesulfonate and colistin after intravenous administration in critically ill patients with infections caused by gram-negative bacteria. Antimicrob Agents Chemother 53:3430–3436CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Nation RL, Garonzik SM, Thamlikitkul V et al (2017) Dosing guidance for intravenous colistin in critically-ill patients. Clin Infect Dis 64:565–571PubMedGoogle Scholar
  10. 10.
    Leypoldt JK, Jaber BL, Lysaght MJ, McCarthy JT, Moran J (2003) Kinetics and dosing predictions for daily haemofiltration. Nephrol Dial Transplant 18:769–776CrossRefPubMedGoogle Scholar
  11. 11.
    Jeffrey RF, Khan AA, Prabhu P et al (1994) A comparison of molecular clearance rates during continuous hemofiltration and hemodialysis with a novel volumetric continuous renal replacement system. Artif Organs 18:425–428CrossRefPubMedGoogle Scholar
  12. 12.
    Elbers PW, Girbes A, Malbrain ML, Bosman R (2015) Right dose, right now: using big data to optimize antibiotic dosing in the critically ill. Anaesthesiol Intensive Ther 47:457–463CrossRefPubMedGoogle Scholar
  13. 13.
    Martinkova J, Malbrain ML, Havel E, Šafránek P, Bezouška J, Kaška M (2016) A pilot study on pharmacokinetic/pharmacodynamic target attainment in critically ill patients receiving piperacillin/tazobactam. Anaesthesiol Intensive Ther 48:23–28CrossRefPubMedGoogle Scholar
  14. 14.
    Azad MA, Huang JX, Cooper MA et al (2012) Structure-activity relationships for the binding of polymyxins with human α-1-acid glycoprotein. Biochem Pharmacol 84:278–291CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Dudhani RV, Li J, Nation RL (2009) Plasma binding of colistin involves multiple proteins and is concentration dependent: potential clinical implications. Abstracts of the forty-ninth Interscience Conference on Antimicrobial Agents and Chemotherapy. American Society for Microbiology, Washington, p 41Google Scholar
  16. 16.
    Herve F, Gomas E, Duche JC, Tillement JP (1993) Evidence for differences in the binding of drugs to the two main genetic variants of human alpha 1-acid glycoprotein. Br J Clin Pharmacol 36:241–249CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Israili ZH, Dayton PG (2001) Human alpha-1-glycoprotein and its interactions with drugs. Drug Metab Rev 33:161–235CrossRefPubMedGoogle Scholar
  18. 18.
    Pea F, Viale P, Pavan F, Furlanut M (2007) Pharmacokinetic considerations for antimicrobial therapy in patients receiving renal replacement therapy. Clin Pharmacokinet 46:997–1038CrossRefGoogle Scholar
  19. 19.
    Mariano F, Leporati M, Carignano P, Stella M, Vincenti M, Biancone L (2015) Efficient removal of colistin A and B in critically ill patients undergoing CVVHDF and sorbent technologies. J Nephrol 28:623–631CrossRefGoogle Scholar
  20. 20.
    Honore PM, Jacobs R, Lochy S et al (2013) Acute respiratory muscle weakness and apnea in a critically ill patient induced by colistin neurotoxicity: key potential role of hemoadsorption elimination during continuous venovenous hemofiltration. Int J Nephrol Renovasc Dis 6:107–111CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Honore PM, Jacobs R, Joannes-Boyau O et al (2013) Newly designed CRRT membranes for sepsis and SIRS—a pragmatic approach for bedside intensivists summarizing the more recent advances: a systematic structured review. ASAIO J 59:99–106CrossRefPubMedGoogle Scholar
  22. 22.
    Karaiskos I, Friberg LE, Galani L et al (2016) Challenge for higher colistin dosage in critically ill patients receiving continuous venovenous haemodiafiltration. Int J Antimicrob Agents 48:337–341CrossRefPubMedGoogle Scholar
  23. 23.
    Verdoodt A, Honore PM, Jacobs R, Van Gorp V, Hubloue I, Spapen HD (2017) High-dose colistin combined with continuous veno-venous haemofiltration for treatment of multidrug-resistant Gram-negative infection in critically ill patients. Intensive Care Med Exp 5(Suppl 2):44-0986 (abst)Google Scholar
  24. 24.
    Gobin P, Lemaître F, Marchand S, Couet W, Olivier JC (2010) Assay of colistin and colistin methanesulfonate in plasma and urine by liquid chromatography-tandem mass spectrometry. Antimicrob Agents Chemother 54:1941–1948CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Honore PM, Jacobs R, Hendrickx I, De Waele E, Van Gorp V, Spapen HD (2015) Higher colistin dose during continuous renal replacement therapy: look before leaping! Crit Care 19:235CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • P. M. Honore
    • 1
    Email author
  • M. L. N. G. Malbrain
    • 1
  • H. D. Spapen
    • 1
  1. 1.Department of Intensive Care, Universitair Ziekenhuis BrusselVrije Universiteit Brussel (VUB)BrusselsBelgium

Personalised recommendations