Advertisement

Systemic Inflammation and Cerebral Dysfunction

  • A. M. Peters van Ton
  • P. Pickkers
  • W. F. AbdoEmail author
Part of the Annual Update in Intensive Care and Emergency Medicine book series (AUICEM)

Introduction

Advances in patient care over recent decades have resulted in lower mortality rates in the intensive care unit (ICU) despite an aging population and increased disease severity. As a consequence, the expanding group of patients who survive critical illness [1] reveals that surviving critical illness is associated with a wide range of long‐lasting negative health outcomes. It is now increasingly recognized that survivors of intensive care may experience physical and cognitive impairment as well as psychological symptoms, which all negatively affect daily functioning and health‐related quality of life.

In 2010, the term ‘post‐intensive care syndrome’ (PCIS) was introduced by the Society of Critical Care Medicine to describe the complex of “new or worsening impairments in physical, cognitive or mental health status arising after critical illness and persisting beyond acute care hospitalization” [ 2]. This term can be applied to both survivors (PICS) and family members of...

References

  1. 1.
    Desai SV, Law TJ, Needham DM (2011) Long-term complications of critical care. Crit Care Med 39:371–379CrossRefGoogle Scholar
  2. 2.
    Needham DM, Davidson J, Cohen H et al (2012) Improving long-term outcomes after discharge from intensive care unit: report from a stakeholders’ conference. Crit Care Med 40:502–509CrossRefGoogle Scholar
  3. 3.
    van den Boogaard M, Schoonhoven L, van der Hoeven JG, van Achterberg T, Pickkers P (2012) Incidence and short-term consequences of delirium in critically ill patients: a prospective observational cohort study. Int J Nurs Stud 49:775–783CrossRefGoogle Scholar
  4. 4.
    Widmann CN, Heneka MT (2014) Long-term cerebral consequences of sepsis. Lancet Neurol 13:630–636CrossRefGoogle Scholar
  5. 5.
    Wolters AE, Slooter AJ, van der Kooi AW, van Dijk D (2013) Cognitive impairment after intensive care unit admission: a systematic review. Intensive Care Med 39:376–386CrossRefGoogle Scholar
  6. 6.
    Pandharipande PP, Girard TD, Jackson JC et al (2013) Long-term cognitive impairment after critical illness. N Engl J Med 369:1306–1316CrossRefPubMedGoogle Scholar
  7. 7.
    Ehlenbach WJ, Hough CL, Crane PK et al (2010) Association between acute care and critical illness hospitalization and cognitive function in older adults. JAMA 303:763–770CrossRefPubMedGoogle Scholar
  8. 8.
    Wilson RS, Hebert LE, Scherr PA, Dong X, Leurgens SE, Evans DA (2012) Cognitive decline after hospitalization in a community population of older persons. Neurology 78:950–956CrossRefPubMedGoogle Scholar
  9. 9.
    Semmler A, Widmann CN, Okulla T et al (2013) Persistent cognitive impairment, hippocampal atrophy and EEG changes in sepsis survivors. J Neurol Neurosurg Psychiatry 84:62–69CrossRefGoogle Scholar
  10. 10.
    Gunther ML, Morandi A, Krauskopf E et al (2012) The association between brain volumes, delirium duration, and cognitive outcomes in intensive care unit survivors: the VISIONS cohort magnetic resonance imaging study. Crit Care Med 40:2022–2032CrossRefPubMedGoogle Scholar
  11. 11.
    Morandi A, Rogers BP, Gunther ML et al (2012) The relationship between delirium duration, white matter integrity, and cognitive impairment in intensive care unit survivors as determined by diffusion tensor imaging: the VISIONS prospective cohort magnetic resonance imaging study. Crit Care Med 40:2182–2189CrossRefPubMedGoogle Scholar
  12. 12.
    Iwashyna TJ, Ely EW, Smith DM, Langa KM (2010) Long-term cognitive impairment and functional disability among survivors of severe sepsis. JAMA 304:1787–1794CrossRefPubMedGoogle Scholar
  13. 13.
    Guerra C, Hua M, Wunsch H (2015) Risk of a diagnosis of dementia for elderly medicare beneficiaries after intensive care. Anesthesiology 123:1105–1112CrossRefPubMedGoogle Scholar
  14. 14.
    Katan M, Moon YP, Paik MC, Sacco RL, Wright CB, Elkind MS (2013) Infectious burden and cognitive function: the Northern Manhattan Study. Neurology 80:1209–1215CrossRefPubMedGoogle Scholar
  15. 15.
    Bruce K, Smith JA, Yelland G, Robinson S (2008) The impact of cardiac surgery on cognition. Stress Health 24:249–266CrossRefGoogle Scholar
  16. 16.
    Monk TG, Weldon BC, Garvan CW et al (2008) Predictors of cognitive dysfunction after major noncardiac surgery. Anesthesiology 108:18–30CrossRefGoogle Scholar
  17. 17.
    Moller JT, Cluitmans P, Rasmussen LS et al (1998) Long-term postoperative cognitive dysfunction in the elderly ISPOCD1 study. ISPOCD investigators. International Study of Post-Operative Cognitive Dysfunction. Lancet 351:857–861CrossRefGoogle Scholar
  18. 18.
    Cao XZ, Ma H, Wang JK et al (2010) Postoperative cognitive deficits and neuroinflammation in the hippocampus triggered by surgical trauma are exacerbated in aged rats. Prog Neuropsychopharmacol Biol Psychiatry 34:1426–1432CrossRefGoogle Scholar
  19. 19.
    Wan Y, Xu J, Ma D, Zeng Y, Cibelli M, Maze M (2007) Postoperative impairment of cognitive function in rats: a possible role for cytokine-mediated inflammation in the hippocampus. Anesthesiology 106:436–443CrossRefGoogle Scholar
  20. 20.
    Sauer AM, Kalkman C, van Dijk D (2009) Postoperative cognitive decline. J Anesth 23:256–259CrossRefGoogle Scholar
  21. 21.
    Mittelbronn M, Dietz K, Schluesener HK, Meyermann R (2001) Local distribution of microglia in the normal adult human central nervous system differs by up to one order of magnitude. Acta Neuropathol 101:249–255Google Scholar
  22. 22.
    Kettenmann H, Hanisch UK, Noda M, Verkhratsky A (2011) Physiology of microglia. Physiol Rev 91:461–553CrossRefGoogle Scholar
  23. 23.
    Ransohoff RM (2016) A polarizing question: do M1 and M2 microglia exist? Nat Neurosci 19:987–991CrossRefGoogle Scholar
  24. 24.
    Hoogland IC, Houbolt C, van Westerloo DJ, van Gool WA, van de Beek D (2015) Systemic inflammation and microglial activation: systematic review of animal experiments. J Neuroinflammation 12:114CrossRefPubMedGoogle Scholar
  25. 25.
    Sandiego CM, Gallezot JD, Pittman B et al (2015) Imaging robust microglial activation after lipopolysaccharide administration in humans with PET. Proc Natl Acad Sci U S A 112:12468–12473CrossRefPubMedGoogle Scholar
  26. 26.
    Lemstra AW, Groen in’t Woud JC, Hoozemans JJ et al (2007) Microglia activation in sepsis: a case-control study. J Neuroinflammation 4:4CrossRefPubMedGoogle Scholar
  27. 27.
    Sharshar T, Annane D, de la Grandmaison GL, Brouland JP, Hopkinson NS, Francoise G (2004) The neuropathology of septic shock. Brain Pathol 14:21–33CrossRefGoogle Scholar
  28. 28.
    Bloc KML, Zecca L, Hong JS (2007) Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci 8:57–69CrossRefGoogle Scholar
  29. 29.
    Godbout JP, Chen J, Abraham J et al (2005) Exaggerated neuroinflammation and sickness behavior in aged mice following activation of the peripheral innate immune system. Faseb J 19:1329–1331CrossRefGoogle Scholar
  30. 30.
    Michels M, Steckert AV, Quevedo J, Barichello T, Dal-Pizzol F (2015) Mechanisms of long-term cognitive dysfunction of sepsis: from blood-borne leukocytes to glial cells. Intensive Care Med Exp 3:30CrossRefPubMedGoogle Scholar
  31. 31.
    Gonzalez H, Elgueta D, Montoya A, Pacheco R (2014) Neuroimmune regulation of microglial activity involved in neuroinflammation and neurodegenerative diseases. J Neuroimmunol 274:1–13CrossRefGoogle Scholar
  32. 32.
    Carson BP, McCormack WG, Conway C et al (2015) An in vivo microdialysis characterization of the transient changes in the interstitial dialysate concentration of metabolites and cytokines in human skeletal muscle in response to insertion of a microdialysis probe. Cytokine 71:327–333CrossRefGoogle Scholar
  33. 33.
    Rupprecht R, Papadopoulos V, Rammes G et al (2010) Translocator protein (18 kDa) (TSPO) as a therapeutic target for neurological and psychiatric disorders. Nat Rev Drug Discov 9(12):971–988CrossRefGoogle Scholar
  34. 34.
    Beckers L, Ory D, Geric I et al (2017) Increased expression of translocator protein (tspo) marks pro-inflammatory microglia but does not predict neurodegeneration. Mol Imaging Biol.  https://doi.org/10.1007/s11307-017-1099-1 (Jul 10, Epub ahead of print)CrossRefGoogle Scholar
  35. 35.
    Jacobs AH, Tavitian B (2012) Noninvasive molecular imaging of neuroinflammation. J Cereb Blood Flow Metab 32:1393–1415CrossRefPubMedGoogle Scholar
  36. 36.
    Lehnardt S (2010) Innate immunity and neuroinflammation in the CNS: the role of microglia in Toll-like receptor-mediated neuronal injury. Glia 58:253–263Google Scholar
  37. 37.
    Tate JA, Snitz BE, Alvarez KA et al (2014) Infection hospitalization increases risk of dementia in the elderly. Crit Care Med 42:1037–1046CrossRefPubMedGoogle Scholar
  38. 38.
    Bolos M, Perea JR, Avila J (2017) Alzheimer’s disease as an inflammatory disease. Biomol Concepts 8:37–43CrossRefGoogle Scholar
  39. 39.
    Stefaniak J, O’Brien J (2016) Imaging of neuroinflammation in dementia: a review. J Neurol Neurosurg Psychiatry 87:21–28CrossRefGoogle Scholar
  40. 40.
    Michels M, Danielski LG, Vieira A et al (2015) CD40-CD40 ligand pathway is a major component of acute neuroinflammation and contributes to long-term cognitive dysfunction after sepsis. Mol Med 21:219–226CrossRefPubMedGoogle Scholar
  41. 41.
    Hernandes MS, D’Avila JC, Trevelin SC et al (2014) The role of Nox2-derived ROS in the development of cognitive impairment after sepsis. J Neuroinflammation 11:36CrossRefPubMedGoogle Scholar
  42. 42.
    Hovens IB, van Leeuwen BL, Mariani MA, Kraneveld AD, Schoemaker RG (2016) Postoperative cognitive dysfunction and neuroinflammation; Cardiac surgery and abdominal surgery are not the same. Brain Behav Immun 54:178–193CrossRefGoogle Scholar
  43. 43.
    Peng L, Xu L, Ouyang W (2013) Role of peripheral inflammatory markers in postoperative cognitive dysfunction (POCD): a meta-analysis. PLoS One 8:e79624CrossRefPubMedGoogle Scholar
  44. 44.
    Forsberg A, Cervenka S, Jonsson Fagerlund M et al (2017) The immune response of the human brain to abdominal surgery. Ann Neurol 81:572–582CrossRefGoogle Scholar
  45. 45.
    Leentjens J, Kox M, van der Hoeven JG, Netea MG, Pickkers P (2013) Immunotherapy for the adjunctive treatment of sepsis: from immunosuppression to immunostimulation. Time for a paradigm change? Am J Respir Crit Care Med 187:1287–1293CrossRefGoogle Scholar
  46. 46.
    Peters van Ton AM, Kox M, Pickkers P, Abdo WF (2017) Reduced glial activity after surgery: a sign of immunoparalysis of the brain? Ann Neurol 82:152CrossRefGoogle Scholar
  47. 47.
    Hellewell S, Semple BD, Morganti-Kossmann MC (2016) Therapies negating neuroinflammation after brain trauma. Brain Res 1640(Pt A):36–56CrossRefGoogle Scholar
  48. 48.
    Dinarello CA, Simon A, van der Meer JW (2012) Treating inflammation by blocking interleukin-1 in a broad spectrum of diseases. Nat Rev Drug Discov 11:633–652CrossRefPubMedGoogle Scholar
  49. 49.
    Xia CY, Zhang S, Gao Y, Wang ZZ, Chen NH (2015) Selective modulation of microglia polarization to M2 phenotype for stroke treatment. Int Immunopharmacol 25:377–382CrossRefGoogle Scholar
  50. 50.
    Jutte JE, Erb CT, Jackson JC (2015) Physical, cognitive, and psychological disability following critical illness: what is the risk? Semin Respir Crit Care Med 36:943–958CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • A. M. Peters van Ton
    • 1
  • P. Pickkers
    • 1
  • W. F. Abdo
    • 1
    Email author
  1. 1.Department of Intensive Care MedicineRadboud University Medical CenterNijmegenNetherlands

Personalised recommendations