Bioelectrical Impedance Analysis in Critical Care

  • P. Formenti
  • L. Bolgiaghi
  • D. ChiumelloEmail author
Part of the Annual Update in Intensive Care and Emergency Medicine book series (AUICEM)


Bioelectrical impedance analysis (BIA) is the collective term that describes the non‐invasive methods to measure the electrical body responses to the introduction of a low‐level, alternating current. BIA was conceptually developed more than 100 years ago, but was only applied in humans using a validated method in the early 1980s [1]. BIA has been used for estimation of body cell mass and total body water (TBW) over the last three decades [2, 3]. More recently, advances in BIA technology have enabled detailed and sophisticated data analyses and targeted applications in clinical practice, including in the critical care environment. Among the different methodologies available, single‐frequency BIA (SF‐BIA) [4] and multi‐frequency bioelectrical impedance spectroscopy (MF‐BIS) [5] offer similar readings for bioelectrical parameters with a wide variation in the quantification of volume and body mass depending on the equation used for calculation [6, 7]. The bioelectric...


  1. 1.
    Lukaski HC, Johnson PE, Bolonchuk WW et al (1985) Assessment of fat-free mass using bioelectrical impedance measurements of the human body. Am J Clin Nutr 41:810–817CrossRefGoogle Scholar
  2. 2.
    NIH (1996) NIH Consensus statement. Bioelectrical impedance analysis in body composition measurement. National Institutes of Health Technology Assessment Conference Statement. December 12–14, 1994. Nutrition 12:749–762CrossRefGoogle Scholar
  3. 3.
    Anonymous (1996) Bioelectrical impedance analysis in body composition measurement. Proceedings of a National Institutes of Health Technology Assessment Conference. Bethesda, Maryland, December 12–14, 1994. Am J Clin Nutr 64(3 Suppl):387S–532SGoogle Scholar
  4. 4.
    Shafer KJ, Siders WA, Johnson LK et al (2009) Validity of segmental multiple-frequency bioelectrical impedance analysis to estimate body composition of adults across a range of body mass indexes. Nutrition 25:25–32CrossRefGoogle Scholar
  5. 5.
    Sun SS, Chumlea WC, Heymsfield SB et al (2003) Development of bioelectrical impedance analysis prediction equations for body composition with the use of a multicomponent model for use in epidemiologic surveys. Am J Clin Nutr 77:331–340CrossRefGoogle Scholar
  6. 6.
    Teruel-Briones JL, Fernandez-Lucas M, Ruiz-Roso G et al (2012) Analysis of concordance between the bioelectrical impedance vector analysis and the bioelectrical impedance spectroscopy in haemodialysis patients. Nefrologia 32:389–395PubMedGoogle Scholar
  7. 7.
    Jaffrin MY, Morel H (2008) Body fluid volumes measurements by impedance: a review of bioimpedance spectroscopy (BIS) and bioimpedance analysis (BIA) methods. Med Eng Phys 30:1257–1269CrossRefGoogle Scholar
  8. 8.
    Dumler F, Kilates C (2003) Body composition analysis by bioelectrical impedance in chronic maintenance dialysis patients: comparisons to the National Health and Nutrition Examination Survey III. J Renal Nutr 13:166–172CrossRefGoogle Scholar
  9. 9.
    Peacock WF 4th (2010) Use of bioimpedance vector analysis in critically ill and cardiorenal patients. Contrib Nephrol 165:226–235CrossRefGoogle Scholar
  10. 10.
    Piccoli A, Pittoni G, Facco E et al (2000) Relationship between central venous pressure and bioimpedance vector analysis in critically ill patients. Crit Care Med 28:132–137CrossRefGoogle Scholar
  11. 11.
    Ellis KJ, Bell SJ, Chertow GM et al (1999) Bioelectrical impedance methods in clinical research: a follow-up to the NIH Technology Assessment Conference. Nutrition 15:874–880CrossRefGoogle Scholar
  12. 12.
    Kyle UG, Bosaeus I, De Lorenzo AD et al (2004) Bioelectrical impedance analysis – part I: review of principles and methods. Clin Nutr 23:1226–1243CrossRefGoogle Scholar
  13. 13.
    Khalil SF, Mohktar MS, Ibrahim F (2014) The theory and fundamentals of bioimpedance analysis in clinical status monitoring and diagnosis of diseases. Sensors (Basel) 14:10895–10928CrossRefGoogle Scholar
  14. 14.
    Kyle UG, Bosaeus I, De Lorenzo AD et al (2004) Bioelectrical impedance analysis-part II: utilization in clinical practice. Clin Nutr 23:1430–1453CrossRefGoogle Scholar
  15. 15.
    Savalle M, Gillaizeau F, Maruani G et al (2012) Assessment of body cell mass at bedside in critically ill patients. Am J Physiol Endocrinol Metab 303:E389–E396CrossRefGoogle Scholar
  16. 16.
    Foster KR, Lukaski HC (1996) Whole-body impedance – what does it measure? Am J Clin Nutr 64(3 Suppl):388S–396SCrossRefGoogle Scholar
  17. 17.
    Nescolarde L, Garcia-Gonzalez MA, Rosell-Ferrer J et al (2006) Thoracic versus whole body bioimpedance measurements: the relation to hydration status and hypertension in peritoneal dialysis patients. Physiol Meas 27:961–971CrossRefGoogle Scholar
  18. 18.
    De Palo T, Messina G, Edefonti A et al (2000) Normal values of the bioelectrical impedance vector in childhood and puberty. Nutrition 16:417–424CrossRefGoogle Scholar
  19. 19.
    Lee SY, Gallagher D (2008) Assessment methods in human body composition. Curr Opin Clin Nutr Metab Care 11:566–572CrossRefGoogle Scholar
  20. 20.
    Schweickert WD, Hall J (2007) ICU-acquired weakness. Chest 131:1541–1549CrossRefGoogle Scholar
  21. 21.
    Rehal MS, Fiskaare E, Tjader I et al (2016) Measuring energy expenditure in the intensive care unit: a comparison of indirect calorimetry by E-sCOVX and Quark RMR with Deltatrac II in mechanically ventilated critically ill patients. Crit Care 20:54CrossRefGoogle Scholar
  22. 22.
    Griffiths RD (1996) Muscle mass, survival, and the elderly ICU patient. Nutrition 12:456–458CrossRefGoogle Scholar
  23. 23.
    Robert S, Zarowitz BJ, Hyzy R et al (1993) Bioelectrical impedance assessment of nutritional status in critically ill patients. Am J Clin Nutr 57:840–844CrossRefGoogle Scholar
  24. 24.
    Kuchnia A, Earthman C, Teigen L et al (2017) Evaluation of bioelectrical impedance analysis in critically ill patients: results of a multicenter prospective study. JPEN J Parenter Enteral Nutr 41:1131–1138CrossRefGoogle Scholar
  25. 25.
    Kim HSLE, Lee YJ, Lee JH, Lee CT, Cho YJ (2015) Clinical application of bioelectrical impedance analysis and its phase angle for nutritional assessment of critically ill patients. J Clin Nutr 7:54–61CrossRefGoogle Scholar
  26. 26.
    Faisy C, Rabbat A, Kouchakji B et al (2000) Bioelectrical impedance analysis in estimating nutritional status and outcome of patients with chronic obstructive pulmonary disease and acute respiratory failure. Intensive Care Med 26:518–525CrossRefGoogle Scholar
  27. 27.
    Lee Y, Kwon O, Shin CS, Lee SM (2015) Use of bioelectrical impedance analysis for the assessment of nutritional status in critically ill patients. Clin Nutr Res 4:32–40CrossRefGoogle Scholar
  28. 28.
    Coppini LZ, Waitzberg DL, Campos AC (2005) Limitations and validation of bioelectrical impedance analysis in morbidly obese patients. Curr Opin Clin Nutr Metab Care 8:329–332CrossRefGoogle Scholar
  29. 29.
    Dewitte A, Carles P, Joannes-Boyau O et al (2016) Bioelectrical impedance spectroscopy to estimate fluid balance in critically ill patients. J Clin Monit Comput 30:227–233CrossRefGoogle Scholar
  30. 30.
    Jones SL, Tanaka A, Eastwood GM et al (2015) Bioelectrical impedance vector analysis in critically ill patients: a prospective, clinician-blinded investigation. Crit Care 19:290CrossRefGoogle Scholar
  31. 31.
    Foley K, Keegan M, Campbell I et al (1999) Use of single-frequency bioimpedance at 50 kHz to estimate total body water in patients with multiple organ failure and fluid overload. Crit Care Med 27:1472–1477CrossRefGoogle Scholar
  32. 32.
    Rochwerg B, Cheung JH, Ribic CM et al (2016) Assessment of postresuscitation volume status by bioimpedance analysis in patients with sepsis in the intensive care unit: a pilot observational study. Can Rrespir J 2016:8671742Google Scholar
  33. 33.
    Sheeran P, Hall GM (1997) Cytokines in anaesthesia. Br J Anaesth 78:201–219CrossRefGoogle Scholar
  34. 34.
    Bracco D, Revelly JP, Berger MM et al (1998) Bedside determination of fluid accumulation after cardiac surgery using segmental bioelectrical impedance. Crit Care Med 26:1065–1070CrossRefGoogle Scholar
  35. 35.
    Tatara T, Tsuzaki K (1998) Segmental bioelectrical impedance analysis improves the prediction for extracellular water volume changes during abdominal surgery. Crit Care Med 26:470–476CrossRefGoogle Scholar
  36. 36.
    Ackland GL, Singh-Ranger D, Fox S et al (2004) Assessment of preoperative fluid depletion using bioimpedance analysis. Br J Anaesth 92:134–136CrossRefGoogle Scholar
  37. 37.
    Barbosa-Silva MC, Barros AJ, Post CL et al (2003) Can bioelectrical impedance analysis identify malnutrition in preoperative nutrition assessment? Nutrition 19:422–426CrossRefGoogle Scholar
  38. 38.
    Ernstbrunner M, Kostner L, Kimberger O et al (2014) Bioimpedance spectroscopy for assessment of volume status in patients before and after general anaesthesia. PLoS One 9:e111139CrossRefGoogle Scholar
  39. 39.
    Chong JU, Nam S, Kim HJ et al (2016) Exploration of fluid dynamics in perioperative patients using bioimpedance analysis. J Gastrointest Surg 20:1020–1027CrossRefGoogle Scholar
  40. 40.
    Pirlich M, Norman K, Lochs H et al (2006) Role of intestinal function in cachexia. Curr Opin Clin Nutr Metab Care 9:603–606CrossRefGoogle Scholar
  41. 41.
    Visser M, van Venrooij LM, Wanders DC et al (2012) The bioelectrical impedance phase angle as an indicator of undernutrition and adverse clinical outcome in cardiac surgical patients. Clin Nutr 31:981–986CrossRefGoogle Scholar
  42. 42.
    da Silva TK, Berbigier MC, Rubin Bde A, Moraes RB, Corrêa Souza G, Schweigert P (2015) Phase angle as a prognostic marker in patients with critical illness. Nutr Clin Pract 30:261–265CrossRefGoogle Scholar
  43. 43.
    Thibault R, Makhlouf AM, Mulliez A et al (2016) Fat-free mass at admission predicts 28-day mortality in intensive care unit patients: the international prospective observational study Phase Angle Project. Intensive Care Med 42:1445–1453CrossRefGoogle Scholar
  44. 44.
    Rhee H, Jang KS, Shin MJ et al (2015) Use of multifrequency bioimpedance analysis in male patients with acute kidney injury who are undergoing continuous veno-venous hemodiafiltration. PLoS One 10:e133199CrossRefGoogle Scholar
  45. 45.
    Chen H, Wu B, Gong D et al (2015) Fluid overload at start of continuous renal replacement therapy is associated with poorer clinical condition and outcome: a prospective observational study on the combined use of bioimpedance vector analysis and serum N-terminal pro-B-type natriuretic peptide measurement. Crit Care 19:135CrossRefGoogle Scholar
  46. 46.
    Samoni S, Vigo V, Resendiz LI et al (2016) Impact of hyperhydration on the mortality risk in critically ill patients admitted in intensive care units: comparison between bioelectrical impedance vector analysis and cumulative fluid balance recording. Crit Care 20:95CrossRefGoogle Scholar
  47. 47.
    Gonzalez J, Morrissey T, Byrne T et al (1995) Bioelectric impedance detects fluid retention in patients undergoing cardiopulmonary bypass. J Thorac Cardiovasc Surg 111:111–118CrossRefGoogle Scholar
  48. 48.
    House AA, Haapio M, Lentini P et al (2010) Volume assessment in mechanically ventilated critical care patients using bioimpedance vectorial analysis, brain natriuretic Peptide, and central venous pressure. Int J Nephrol 2011:413760PubMedPubMedCentralGoogle Scholar
  49. 49.
    Basso F, Berdin G, Virzi GM et al (2013) Fluid management in the intensive care unit: bioelectrical impedance vector analysis as a tool to assess hydration status and optimal fluid balance in critically ill patients. Blood Purif 36:192–199CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Unità Operativa Complessa di Anestesia e RianimazioneOspedale San Paolo-Azienda Socio Sanitaria Territoriale Santi Paolo e CarloMilanItaly
  2. 2.Dipartimento di Scienze della SaluteUniversità degli Studi di MilanoMilanItaly

Personalised recommendations