Contributors to Differences between Mixed and Central Venous Oxygen Saturation

  • T. D. Corrêa
  • J. Takala
  • S. M. JakobEmail author
Part of the Annual Update in Intensive Care and Emergency Medicine book series (AUICEM)


Mixed venous oxygen saturation (SvO2) represents the relationship between systemic oxygen delivery (DO2) and consumption (VO2) and, therefore, the adequacy of oxygen supply to the tissues [1]. SvO2 reflects the total amount of oxygen contained in the blood that returns to the right heart through the superior vena cava, inferior vena cava (IVC) and coronary sinus [1]. Whereas SvO2 can only be obtained by right heart catheterization, central venous oxygen saturation (ScvO2) can be measured using a central venous catheter (CVC), which is easier to place, cheaper, and is assumed to have fewer complications than a pulmonary artery catheter (PAC) [2]. Since the use of PAC in critically ill patients has declined [3], ScvO2 has been used as a surrogate of SvO2 [4]. ScvO2 represents the blood oxygen saturation at the drainage from the superior or the inferior vena cava into the right atrium, depending on catheter position [5, 6].

The underlying assumption for using ScvO2as...


  1. 1.
    Bloos F, Reinhart K (2005) Venous oximetry. Intensive Care Med 31:911–913CrossRefGoogle Scholar
  2. 2.
    Wheeler AP, Bernard GR, Thompson BT et al (2006) Pulmonary-artery versus central venous catheter to guide treatment of acute lung injury. N Engl J Med 354:2213–2224CrossRefGoogle Scholar
  3. 3.
    Pandey A, Khera R, Kumar N, Golwala H, Girotra S, Fonarow GC (2016) Use of pulmonary artery catheterization in US patients with heart failure, 2001–2012. JAMA Intern Med 176:129–132CrossRefPubMedCentralGoogle Scholar
  4. 4.
    Reinhart K, Kuhn HJ, Hartog C, Bredle DL (2004) Continuous central venous and pulmonary artery oxygen saturation monitoring in the critically ill. Intensive Care Med 30:1572–1578CrossRefGoogle Scholar
  5. 5.
    Reinhart K, Bloos F (2005) The value of venous oximetry. Curr Opin Crit Care 11:259–263CrossRefGoogle Scholar
  6. 6.
    Davison DL, Chawla LS, Selassie L et al (2010) Femoral-based central venous oxygen saturation is not a reliable substitute for subclavian/internal jugular-based central venous oxygen saturation in patients who are critically ill. Chest 138:76–83CrossRefGoogle Scholar
  7. 7.
    Scheinman MM, Brown MA, Rapaport E (1969) Critical assessment of use of central venous oxygen saturation as a mirror of mixed venous oxygen in severely ill cardiac patients. Circulation 40:165–172CrossRefGoogle Scholar
  8. 8.
    Dueck MH, Klimek M, Appenrodt S, Weigand C, Boerner U (2005) Trends but not individual values of central venous oxygen saturation agree with mixed venous oxygen saturation during varying hemodynamic conditions. Anesthesiology 103:249–257CrossRefGoogle Scholar
  9. 9.
    Mozina H, Podbregar M (2010) Near-infrared spectroscopy during stagnant ischemia estimates central venous oxygen saturation and mixed venous oxygen saturation discrepancy in patients with severe left heart failure and additional sepsis/septic shock. Crit Care 14:R42CrossRefPubMedCentralGoogle Scholar
  10. 10.
    Varpula M, Karlsson S, Ruokonen E, Pettila V (2006) Mixed venous oxygen saturation cannot be estimated by central venous oxygen saturation in septic shock. Intensive Care Med 32:1336–1343CrossRefGoogle Scholar
  11. 11.
    van Beest PA, van Ingen J, Boerma EC et al (2010) No agreement of mixed venous and central venous saturation in sepsis, independent of sepsis origin. Crit Care 14:R219CrossRefPubMedCentralGoogle Scholar
  12. 12.
    Regueira T, Djafarzadeh S, Brandt S et al (2012) Oxygen transport and mitochondrial function in porcine septic shock, cardiogenic shock, and hypoxaemia. Acta Anaesth Scand 56:846–859CrossRefGoogle Scholar
  13. 13.
    Gorrasi J, Eleftheriadis A, Takala J et al (2013) Different contribution of splanchnic organs to hyperlactatemia in fecal peritonitis and cardiac tamponade. Biomed Res Int 2013:251084CrossRefPubMedCentralGoogle Scholar
  14. 14.
    Ruokonen E, Takala J, Uusaro A (1991) Effect of vasoactive treatment on the relationship between mixed venous and regional oxygen saturation. Crit Care Med 19:1365–1369CrossRefGoogle Scholar
  15. 15.
    Ahn JH, Kim IS, Yang JH, Lee IG, Seo DH, Kim SP (2017) Transoesophageal echocardiographic evaluation of central venous catheter positioning using Peres’ formula or a radiological landmark-based approach: a prospective randomized single-centre study. Br J Anaesth 118:215–222CrossRefGoogle Scholar
  16. 16.
    Barratt-Boyes BG, Wood EH (1957) The oxygen saturation of blood in the venae cavae, right-heart chambers, and pulmonary vessels of healthy subjects. J Lab Clin Med 50:93–106PubMedGoogle Scholar
  17. 17.
    Chawla LS, Zia H, Gutierrez G, Katz NM, Seneff MG, Shah M (2004) Lack of equivalence between central and mixed venous oxygen saturation. Chest 126:1891–1896CrossRefGoogle Scholar
  18. 18.
    Shepherd SJ, Pearse RM (2009) Role of central and mixed venous oxygen saturation measurement in perioperative care. Anesthesiology 111:649–656CrossRefGoogle Scholar
  19. 19.
    Kaisti KK, Langsjo JW, Aalto S et al (2003) Effects of sevoflurane, propofol, and adjunct nitrous oxide on regional cerebral blood flow, oxygen consumption, and blood volume in humans. Anesthesiology 99:603–613CrossRefGoogle Scholar
  20. 20.
    Sander M, Spies CD, Foer A et al (2007) Agreement of central venous saturation and mixed venous saturation in cardiac surgery patients. Intensive Care Med 33:1719–1725CrossRefPubMedCentralGoogle Scholar
  21. 21.
    Schmid FX, Philipp A, Foltan M, Jueckstock H, Wiesenack C, Birnbaum D (2003) Adequacy of perfusion during hypothermia: regional distribution of cardiopulmonary bypass flow, mixed venous and regional venous oxygen saturation – hypothermia and distribution of flow and oxygen. Thorac Cardiovasc Surg 51:306–311CrossRefPubMedCentralGoogle Scholar
  22. 22.
    Soussi MS, Jebali MA, Le MY et al (2012) Central venous saturation is not an alternative to mixed venous saturation during cardiopulmonary bypass in coronary artery surgery patients. Perfusion 27:300–306CrossRefPubMedCentralGoogle Scholar
  23. 23.
    Lorentzen AG, Lindskov C, Sloth E, Jakobsen CJ (2008) Central venous oxygen saturation cannot replace mixed venous saturation in patients undergoing cardiac surgery. J Cardiothorac Vasc Anesth 22:853–857CrossRefPubMedCentralGoogle Scholar
  24. 24.
    Lequeux PY, Bouckaert Y, Sekkat H et al (2010) Continuous mixed venous and central venous oxygen saturation in cardiac surgery with cardiopulmonary bypass. Eur J Anaesthesiol 27:295–299CrossRefPubMedCentralGoogle Scholar
  25. 25.
    Kopterides P, Bonovas S, Mavrou I, Kostadima E, Zakynthinos E, Armaganidis A (2009) Venous oxygen saturation and lactate gradient from superior vena cava to pulmonary artery in patients with septic shock. Shock 31:561–567CrossRefPubMedCentralGoogle Scholar
  26. 26.
    Ruokonen E, Takala J, Kari A (1993) Regional blood flow and oxygen transport in patients with the low cardiac output syndrome after cardiac surgery. Crit Care Med 21:1304–1311CrossRefPubMedCentralGoogle Scholar
  27. 27.
    Ho KM, Harding R, Chamberlain J, Bulsara M (2010) A comparison of central and mixed venous oxygen saturation in circulatory failure. J Cardiothorac Vasc Anesth 24:434–439CrossRefPubMedCentralGoogle Scholar
  28. 28.
    Li JQ, Li N, Han GJ et al (2016) Clinical research about airway pressure release ventilation for moderate to severe acute respiratory distress syndrome. Eur Rev Med Pharmacol Sci 20:2634–2641PubMedGoogle Scholar
  29. 29.
    Brandt S, Regueira T, Bracht H et al (2009) Effect of fluid resuscitation on mortality and organ function in experimental sepsis models. Crit Care 13:R186CrossRefPubMedCentralGoogle Scholar
  30. 30.
    Reinhart K, Rudolph T, Bredle DL, Hannemann L, Cain SM (1989) Comparison of central-venous to mixed-venous oxygen saturation during changes in oxygen supply/demand. Chest 95:1216–1221CrossRefGoogle Scholar
  31. 31.
    Chvojka J, Sykora R, Krouzecky A et al (2008) Renal haemodynamic, microcirculatory, metabolic and histopathological responses to peritonitis-induced septic shock in pigs. Crit Care 12:R164CrossRefPubMedCentralGoogle Scholar
  32. 32.
    Pearse R, Dawson D, Fawcett J, Rhodes A, Grounds RM, Bennett ED (2005) Changes in central venous saturation after major surgery, and association with outcome. Crit Care 9:R694–R699CrossRefPubMedCentralGoogle Scholar
  33. 33.
    Ruokonen E, Takala J, Kari A, Saxen H, Mertsola J, Hansen EJ (1993) Regional blood flow and oxygen transport in septic shock. Crit Care Med 21:1296–1303CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of Intensive Care Medicine, InselspitalBern University Hospital, University of BernBernSwitzerland
  2. 2.Intensive Care UnitHospital Israelita Albert EinsteinSão PauloBrazil

Personalised recommendations