Close Down the Lungs and Keep them Resting to Minimize Ventilator-induced Lung Injury

  • P. PelosiEmail author
  • P. R. M. Rocco
  • M. Gama de Abreu
Part of the Annual Update in Intensive Care and Emergency Medicine book series (AUICEM)


Mechanical ventilation is needed to support respiratory function in different clinical conditions, from healthy to diseased lungs. However, in recent years, research has shown that mechanical ventilation may promote acute and chronic damage to pulmonary structures, the so‐called ventilator‐induced lung injury (VILI), especially in patients with acute respiratory distress syndrome (ARDS) [1]. ARDS is characterized by a loss of aerated lung tissue as a result of edema and atelectasis, which reduces respiratory system compliance and impairs gas exchange. Several mechanisms have been identified that may underlie VILI. Those considered most important are alveolar overdistension and the continuous opening and closing of atelectatic lung units during breath cycles [2]. As a consequence, clinical use of lower tidal volume (VT) to achieve reduced inspiratory stress and strain (‘gentle’ ventilation of the aerated lung), combined with higher levels of positive end‐expiratory...


  1. 1.
    Thompson BT, Chambers RC, Liu KD (2017) Acute respiratory distress syndrome. N Engl J Med 377:562–572CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Rocco PRM, Dos Santos C, Pelosi P (2012) Pathophysiology of ventilator-associated lung injury. Curr Opin Anaesthesiol 25:123–130CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Putensen C, Theuerkauf N, Zinserling J, Wrigge H, Pelosi P (2009) Meta-analysis: ventilation strategies and outcomes of the acute respiratory distress syndrome and acute lung injury. Ann Intern Med 151:566–576CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Bellani G, Laffey JG, Pham T et al (2016) Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA 315:788–800CrossRefGoogle Scholar
  5. 5.
    Esteban A, Frutos-Vivar F, Muriel A et al (2013) Evolution of mortality over time in patients receiving mechanical ventilation. Am J Respir Crit Care Med 188:220–230CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Constantin JM, Godet T, Jabaudon M, Bazin JE, Futier E (2017) Recruitment maneuvers in acute respiratory distress syndrome. Ann Transl Med 5:290CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Lachmann B (1992) Open up the lung and keep the lung open. Intensive Care Med 18:319–321CrossRefGoogle Scholar
  8. 8.
    Cruz SR, Rojas JI, Nervi R, Heredia R, Ciapponi A (2013) High versus low positive end-expiratory pressure (PEEP) levels for mechanically ventilated adult patients with acute lung injury and acute respiratory distress syndrome. Cochrane Database Syst Rev CD009098Google Scholar
  9. 9.
    Lu J, Wang X, Chen M et al (2017) An open lung strategy in the management of acute respiratory distress syndrome: a systematic review and meta-analysis. Shock 48:43–53CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Rezoagli E, Fumagalli R, Bellani G (2017) Definition and epidemiology of acute respiratory distress syndrome. Ann Transl Med 5:282CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Gattinoni L, Marini JJ, Pesenti A, Quintel M, Mancebo J, Brochard L (2016) The “baby lung” became an adult. Intensive Care Med 42:663–673CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Gattinoni L, Pesenti A, Carlesso E (2013) Body position changes redistribute lung computed-tomographic density in patients with acute respiratory failure: impact and clinical fallout through the following 20 years. Intensive Care Med 39:1909–1915CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Pelosi P, D’Andrea L, Vitale G, Pesenti A, Gattinoni L (1994) Vertical gradient of regional lung inflation in adult respiratory distress syndrome. Am J Respir Crit Care Med 149:8–13CrossRefGoogle Scholar
  14. 14.
    Pelosi P, Rocco PRM (2007) Airway closure: the silent killer of peripheral airways. Crit Care 11:114CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Pesenti A, Musch G, Lichtenstein D et al (2016) Imaging in acute respiratory distress syndrome. Intensive Care Med 42:686–698CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Hubmayr RD (2002) Perspective on lung injury and recruitment: a skeptical look at the opening and collapse story. Am J Respir Crit Care Med 165:1647–1653CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Caldini P, Leith JD, Brennan MJ (1975) Effect of continuous postive-pressure ventilation (CPPV) on edema formation in dog lung. J Appl Physiol 39:672–679CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Demling RH, Staub NC, Edmunds LH (1975) Effect of end-expiratory airway pressure on accumulation of extravascular lung water. J Appl Physiol 38:907–912CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Colmenero-Ruiz M, Fernández-Mondéjar E, Fernández-Sacristán MA, Rivera-Fernández R, Vazquez-Mata G (1997) PEEP and low tidal volume ventilation reduce lung water in porcine pulmonary edema. Am J Respir Crit Care Med 155:964–970CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Russell JA, Hoeffel J, Murray JF (1982) Effect of different levels of positive end-expiratory pressure on lung water content. J Appl Physiol 53:9–15CrossRefGoogle Scholar
  21. 21.
    Tsuchida S, Engelberts D, Peltekova V et al (2006) Atelectasis causes alveolar injury in nonatelectatic lung regions. Am J Respir Crit Care Med 174:279–289CrossRefGoogle Scholar
  22. 22.
    Wakabayashi K, Wilson MR, Tatham KC, O’Dea KP, Takata M (2014) Volutrauma, but not atelectrauma, induces systemic cytokine production by lung-marginated monocytes. Crit Care Med 42:e49–e57CrossRefGoogle Scholar
  23. 23.
    Chu EK, Whitehead T, Slutsky AS (2004) Effects of cyclic opening and closing at low- and high-volume ventilation on bronchoalveolar lavage cytokines. Crit Care Med 32:168–174CrossRefGoogle Scholar
  24. 24.
    Narimanbekov IO, Rozycki HJ (1995) Effect of IL-1 blockade on inflammatory manifestations of acute ventilator-induced lung injury in a rabbit model. Exp Lung Res 21:239–254CrossRefGoogle Scholar
  25. 25.
    Takata M, Abe J, Tanaka H et al (1997) Intraalveolar expression of tumor necrosis factor-alpha gene during conventional and high-frequency ventilation. Am J Respir Crit Care Med 156:272–279CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Bellani G, Rouby JJ, Constantin JM, Pesenti A (2017) Looking closer at acute respiratory distress syndrome: the role of advanced imaging techniques. Curr Opin Crit Care 23:30–37CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Ball L, Vercesi V, Costantino F, Chandrapatham K, Pelosi P (2017) Lung imaging: how to get better look inside the lung. Ann Transl Med 5:294CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Rodrigues RS, Bozza FA, Hanrahan CJ et al (2017) (18)F-fluoro-2-deoxyglucose PET informs neutrophil accumulation and activation in lipopolysaccharide-induced acute lung injury. Nucl Med Biol 48:52–62CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Retamal J, Sörensen J, Lubberink M et al (2016) Feasibility of (68)Ga-labeled Siglec-9 peptide for the imaging of acute lung inflammation: a pilot study in a porcine model of acute respiratory distress syndrome. Am J Nucl Med Mol Imaging 6:18–31PubMedPubMedCentralGoogle Scholar
  30. 30.
    de Prost N, Costa EL, Wellman T et al (2013) Effects of ventilation strategy on distribution of lung inflammatory cell activity. Crit Care 17:R175CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Bellani G, Messa C, Guerra L et al (2009) Lungs of patients with acute respiratory distress syndrome show diffuse inflammation in normally aerated regions: a [18F]-fluoro-2-deoxy-D-glucose PET/CT study. Crit Care Med 37:2216–2222CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Samary CS, Santos RS, Santos CL et al (2015) Biological impact of transpulmonary driving pressure in experimental acute respiratory distress syndrome. Anesthesiology 123:423–433CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Samary CS, Silva PL, Gama de Abreu M, Pelosi P, Rocco PRM (2016) Ventilator-induced lung injury: power to the mechanical power. Anesthesiology 125:1070–1071CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Güldner A, Braune A, Ball L et al (2016) Comparative effects of volutrauma and atelectrauma on lung inflammation in experimental acute respiratory distress syndrome. Crit Care Med 44:e854–e865CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Malbrain M, Pelosi P (2006) Open up and keep the lymphatics open: they are the hydraulics of the body! Crit Care Med 34:2860–2862CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Moriondo A, Solari E, Marcozzi C, Negrini D (2013) Spontaneous activity in peripheral diaphragmatic lymphatic loops. Am J Physiol Heart Circ Physiol 305:H987–H995CrossRefGoogle Scholar
  37. 37.
    Negrini D, Marcozzi C, Solari E et al (2016) Hyperpolarization-activated cyclic nucleotide-gated channels in peripheral diaphragmatic lymphatics. Am J Physiol Heart Circ Physiol 311:H892–H903CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Moriondo A, Solari E, Marcozzi C, Negrini D (2015) Diaphragmatic lymphatic vessel behavior during local skeletal muscle contraction. Am J Physiol Heart Circ Physiol 308:H193–H205CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Moriondo A, Mukenge S, Negrini D (2005) Transmural pressure in rat initial subpleural lymphatics during spontaneous or mechanical ventilation. Am J Physiol Heart Circ Physiol 289:H263–H269CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Repessé X, Charron C, Vieillard-Baron A (2015) Acute cor pulmonale in ARDS: rationale for protecting the right ventricle. Chest 147:259–265CrossRefPubMedGoogle Scholar
  41. 41.
    Mekontso Dessap A, Boissier F et al (2016) Acute cor pulmonale during protective ventilation for acute respiratory distress syndrome: prevalence, predictors, and clinical impact. Intensive Care Med 42:862–870CrossRefPubMedGoogle Scholar
  42. 42.
    Dambrosio M, Fiore G, Brienza N et al (1996) Right ventricular myocardial function in ARF patients. PEEP as a challenge for the right heart. Intensive Care Med 22:772–780CrossRefPubMedGoogle Scholar
  43. 43.
    Mekontso Dessap A, Charron C, Devaquet J et al (2009) Impact of acute hypercapnia and augmented positive end-expiratory pressure on right ventricle function in severe acute respiratory distress syndrome. Intensive Care Med 35:1850–1858CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Repessé X, Vieillard-Baron A (2017) Right heart function during acute respiratory distress syndrome. Ann Transl Med 5:295CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Gattinoni L, Caironi P, Cressoni M et al (2006) Lung recruitment in patients with the acute respiratory distress syndrome. N Engl J Med 354:1775–1786CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Gattinoni L, Pelosi P, Crotti S, Valenza F (1995) Effects of positive end-expiratory pressure on regional distribution of tidal volume and recruitment in adult respiratory distress syndrome. Am J Respir Crit Care Med 151:1807–1814CrossRefGoogle Scholar
  47. 47.
    Cressoni M, Chiumello D, Algieri I et al (2017) Opening pressures and atelectrauma in acute respiratory distress syndrome. Intensive Care Med 43:603–611CrossRefGoogle Scholar
  48. 48.
    Puybasset L, Cluzel P, Gusman P, Grenier P, Preteux F, Rouby JJ (2000) Regional distribution of gas and tissue in acute respiratory distress syndrome. I. Consequences for lung morphology. CT Scan ARDS Study Group. Intensive Care Med 26:857–869CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of Surgical Sciences and Integrated Diagnostics, San Martino Policlinico Hospital, IRCCS for OncologyUniversity of GenoaGenoaItaly
  2. 2.Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of BiophysicsFederal University of Rio de JaneiroRio de JaneiroBrazil
  3. 3.Department of Anesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav CarusTechnische Universität DresdenDresdenGermany

Personalised recommendations