Alveolar Recruitment in Patients with Assisted Ventilation: Open Up the Lung in Spontaneous Breathing

  • A. Lovas
  • Z. MolnárEmail author
Part of the Annual Update in Intensive Care and Emergency Medicine book series (AUICEM)


Hypoxemic respiratory failure, especially its most severe form, acute respiratory distress syndrome (ARDS), is one of the leading reasons for implementing mechanical ventilation in the critically ill [1]. ARDS is a life‐threatening condition precipitated by disorders that frequently result in intensive care unit (ICU) admission. All of these disorders causing either direct pulmonary or indirect extrapulmonary tissue damage feature a systemic inflammatory response. Released cytokines, such as interleukin (IL)‐1, IL‐6, IL‐8 and tumor necrosis factor (TNF), activate neutrophils in the lung throughout the inflammatory cascade [2]. Thereafter, injurious substances, such as free oxygen radicals and proteolytic enzymes, are secreted by the activated immune cells leading to alveolar endothelium and epithelium destruction. The latter pathophysiological mechanism induces impaired permeability in the lung resulting in alveolar flooding by protein‐rich edema fluid [3]. Surfactant,...


  1. 1.
    Eastwood G, Bellomo R, Bailey M et al (2012) Arterial oxygen tension and mortality in mechanically ventilated patients. Intensive Care Med 38:91–98CrossRefGoogle Scholar
  2. 2.
    Lee WL, Downey GP (2001) Neutrophil activation and acute lung injury. Curr Opin Crit Care 7:1–7CrossRefGoogle Scholar
  3. 3.
    Han S, Mallampalli RK (2015) The acute respiratory distress syndrome: from mechanism to translation. J Immunol 194:855–860CrossRefGoogle Scholar
  4. 4.
    Pelosi P, de Abreu MG (2015) Acute respiratory distress syndrome: we can’t miss regional lung perfusion! BMC Anesth 15:35CrossRefGoogle Scholar
  5. 5.
    Leligdowicz A, Fan E (2015) Extracorporeal life support for severe acute respiratory distress syndrome. Curr Opin Crit Care 21:13–19CrossRefGoogle Scholar
  6. 6.
    Ferguson ND, Cook DJ, Guyatt GH et al (2013) High-frequency oscillation in early acute respiratory distress syndrome. N Engl J Med 368:795–805CrossRefGoogle Scholar
  7. 7.
    Guérin C, Reignier J, Richard JC et al (2013) Prone positioning in severe acute respiratory distress syndrome. N Engl J Med 368:2159–2168CrossRefGoogle Scholar
  8. 8.
    Lachmann B (1992) Open up the lung and keep the lung open. Intensive Care Med 18:319–321CrossRefGoogle Scholar
  9. 9.
    Bellani G, Laffey JG, Pham T et al (2016) Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA 315:788–800CrossRefGoogle Scholar
  10. 10.
    Sassoon CS, Zhu E, Caiozzo VJ (2004) Assist-control mechanical ventilation attenuates ventilator-induced diaphragmatic dysfunction. Am J Respir Crit Care Med 170:626–632CrossRefGoogle Scholar
  11. 11.
    Putensen C, Muders T, Varelmann D, Wrigge H (2006) The impact of spontaneous breathing during mechanical ventilation. Curr Opin Crit Care 12:13–18CrossRefGoogle Scholar
  12. 12.
    Fisher AB, Chien S, Barakat AI, Nerem RM (2001) Endothelial cellular response to altered shear stress. Am J Physiol Lung Cell Mol Physiol 281:L529–L533CrossRefGoogle Scholar
  13. 13.
    Tschumperlin DJ, Oswari J, Margulies AS (2000) Deformation-induced injury of alveolar epithelial cells. Effect of frequency, duration, and amplitude. Am J Respir Crit Care Med 162:357–362CrossRefGoogle Scholar
  14. 14.
    Putensen C, Zech S, Wrigge H et al (2001) Long-term effects of spontaneous breathing during ventilatory support in patients with acute lung injury. Am J Respir Crit Care Med 164:43–49CrossRefGoogle Scholar
  15. 15.
    Papazian L, Forel JM, Gacouin A et al (2010) Neuromuscular blockers in early acute respiratory distress syndrome. N Engl J Med 363:1107–1116CrossRefGoogle Scholar
  16. 16.
    Leatherman JW, Fluegel WL, David WS, Davies SF, Iber C (1996) Muscle weakness in mechanically ventilated patients with severe asthma. Am J Respir Crit Care Med 153:1686–1690CrossRefGoogle Scholar
  17. 17.
    Garnacho-Montero J, Madrazo-Osuna J, Garcia-Garmendia JL et al (2001) Critical illness polyneuropathy: risk factors and clinical consequences: a cohort study in septic patients. Intensive Care Med 27:1288–1296CrossRefGoogle Scholar
  18. 18.
    Peñuelas Ó, Thille AW, Esteban A (2015) Discontinuation of ventilatory support: new solutions to old dilemmas. Curr Opin Crit Care 21:74–81CrossRefGoogle Scholar
  19. 19.
    Slutsky AS, Ranieri VM (2013) Ventilator-induced lung injury. N Engl J Med 369:2126–2136CrossRefGoogle Scholar
  20. 20.
    Piquilloud L, Tassaux D, Bialais E et al (2012) Neurally adjusted ventilatory assist (NAVA) improves patient-ventilator interaction during non-invasive ventilation delivered by face mask. Intensive Care Med 38:1624–1631CrossRefGoogle Scholar
  21. 21.
    Sehgal IS, Dhooria S, Aggarwal AN, Behera D, Agarwal R (2016) Asynchrony index in pressure support ventilation (PSV) versus neurally adjusted ventilator assist (NAVA) during non-invasive ventilation (NIV) for respiratory failure: systematic review and meta-analysis. Intensive Care Med 42:1813–1815CrossRefGoogle Scholar
  22. 22.
    Mireles-Cabodevila E, Kacmarek RM (2016) Should airway pressure release ventilation be the primary mode in ARDS? Respir Care 61:761–773CrossRefGoogle Scholar
  23. 23.
    Calzia E, Lindner KH, Witt S et al (1994) Pressure-time product and work of breathing during biphasic continuous positive airway pressure and assisted spontaneous breathing. Am J Respir Crit Care Med 150:904–910CrossRefGoogle Scholar
  24. 24.
    Neumann P, Wrigge H, Zinserling J et al (2005) Spontaneous breathing affects the spatial ventilation and perfusion distribution during mechanical ventilatory support. Crit Care Med 33:1090–1095CrossRefGoogle Scholar
  25. 25.
    Rittayamai N, Brochard L (2015) Recent advances in mechanical ventilation in patients with acute respiratory distress syndrome. Eur Respir Rev 24:132–140CrossRefGoogle Scholar
  26. 26.
    Petitjeans F, Pichot C, Ghignone M, Quintin L (2016) Early severe acute respiratory distress syndrome: what’s going on? Part II: controlled vs. spontaneous ventilation? Anaesthesiol Intensive Ther 48:339–351CrossRefGoogle Scholar
  27. 27.
    Lovas A, Németh MF, Trásy D, Molnár Z (2015) Lung recruitment can improve oxygenation in patients ventilated in continuous positive airway pressure/pressure support mode. Front Med (Lausanne) 2:25Google Scholar
  28. 28.
    Esan A, Hess DR, Raoof S et al (2010) Severe hypoxemic respiratory failure: part 1–ventilator strategies. Chest 137:1203–1216CrossRefGoogle Scholar
  29. 29.
    Oczenski W, Hörmann C, Keller C et al (2004) Recruitment maneuvers after a positive end-expiratory pressure trial do not induce sustained effects in early adult respiratory distress syndrome. Anesthesiology 101:620–625CrossRefGoogle Scholar
  30. 30.
    Gattinoni L, Caironi P, Cressoni M et al (2006) Lung recruitment in patients with the acute respiratory distress syndrome. N Engl J Med 354:1775–1786CrossRefGoogle Scholar
  31. 31.
    Lovas A, Szakmány T (2015) Haemodynamic effects of lung recruitment manoeuvres. Biomed Res Int 2015:478970CrossRefGoogle Scholar
  32. 32.
    Schumann S, Vimlati L, Kawati R et al (2011) Analysis of dynamic intratidal compliance in a lung collapse model. Anesthesiology 114:1111–1117CrossRefGoogle Scholar
  33. 33.
    Boles J-M, Bion J, Connors A et al (2007) Weaning from mechanical ventilation. Eur Respir J 29:1033–1056CrossRefGoogle Scholar
  34. 34.
    Ayre P (1937) Anaesthesia for intracranial operations: a new technique. Lancet 229:561–563CrossRefGoogle Scholar
  35. 35.
    Lawrence JC (1978) PEEP and the Ayre’s T-Piece system. Anaesth Intensive Care 6:359PubMedGoogle Scholar
  36. 36.
    Lovas A, Molnár Z (2013) T-piece improves arterial and central venous oxygenation in trachestomized patients as compared to continuous positive airway pressure/pressure support ventilation. Minerva Anestesiol 79:492–497PubMedGoogle Scholar
  37. 37.
    Westerdahl E, Lindmark B, Eriksson T et al (2003) The immediate effects of deep breathing exercises on atelectasis and oxygenation after cardiac surgery. Scand Cardiovasc J 37:363–367CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of Anesthesiology and Intensive CareUniversity of SzegedSzegedHungary

Personalised recommendations