Calcium Phosphate Coatings for Metallic Orthopedic Biomaterials

  • Yingchao Su
  • Yufeng Zheng
  • Liping Tang
  • Yi-Xian Qin
  • Donghui Zhu


Metallic implant materials are widely used for clinical applications but still could not achieve satisfactory functionalities for specific biomedical applications. Surface functionalizations are of particular interest to improve their surface bioactivity and provide other biofunctionalities for biomedical applications. Because of the excellent biological functions of calcium phosphate ceramics (CaPs), CaP coatings have been proposed and developed onto the surface of metallic implants to achieve improved osteointegration, corrosion resistance and antibacterial properties. This review firstly introduces the metallic biomaterials, important surface properties, and then elaborates the surface functionalization with CaP coatings for metallic biomaterials.


Metallic implants Surface modifications Hydroxyapatite Biofunctionalization Biocompatibility Osteogenesis Osteointegration Corrosion resistance Biodegradation Antibacteria 



This work was supported by National Institutes of Health [grant number AR52379, AR49286, and AR61821]. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.


  1. 1.
    Nel AE, et al. Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater. 2009;8(7):543–57.PubMedCrossRefGoogle Scholar
  2. 2.
    Planell JA, et al. Materials surface effects on biological interactions. In: Shastri V, Altankov G, Lendlein A, editors. Advances in regenerative medicine: role of nanotechnology, and engineering principles. Dordrecht: Springer; 2010. p. 233–52.CrossRefGoogle Scholar
  3. 3.
    Anselme K. Osteoblast adhesion on biomaterials. Biomaterials. 2000;21(7):667–81.PubMedCrossRefGoogle Scholar
  4. 4.
    Fan Y, Duan K, Wang R. A composite coating by electrolysis-induced collagen self-assembly and calcium phosphate mineralization. Biomaterials. 2005;26(14):1623–32.PubMedCrossRefGoogle Scholar
  5. 5.
    Dorozhkin SV. Calcium orthophosphate coatings on magnesium and its biodegradable alloys. Acta Biomater. 2014;10(7):2919–34.PubMedCrossRefGoogle Scholar
  6. 6.
    Shadanbaz S, Dias GJ. Calcium phosphate coatings on magnesium alloys for biomedical applications: a review. Acta Biomater. 2012;8(1):20–30.PubMedCrossRefGoogle Scholar
  7. 7.
    Surmenev RA, Surmeneva MA, Ivanova AA. Significance of calcium phosphate coatings for the enhancement of new bone osteogenesis—a review. Acta Biomater. 2014;10(2):557–79.PubMedCrossRefGoogle Scholar
  8. 8.
    Barrere F, et al. Osteointegration of biomimetic apatite coating applied onto dense and porous metal implants in femurs of goats. J Biomed Mater Res B Appl Biomater. 2003;67((1):655–65.CrossRefGoogle Scholar
  9. 9.
    Alam MI, et al. Evaluation of ceramics composed of different hydroxyapatite to tricalcium phosphate ratios as carriers for rhBMP-2. Biomaterials. 2001;22(12):1643–51.PubMedCrossRefGoogle Scholar
  10. 10.
    Liu Y, De GK, Hunziker EB. BMP-2 liberated from biomimetic implant coatings induces and sustains direct ossification in an ectopic rat model. Bone. 2005;36(5):745–57.PubMedCrossRefGoogle Scholar
  11. 11.
    Su Y, et al. Enhancing the corrosion resistance and surface bioactivity of a calcium-phosphate coating on a biodegradable AZ60 magnesium alloy via a simple fluorine post-treatment method. RSC Adv. 2015;5(69):56001–10.CrossRefGoogle Scholar
  12. 12.
    Kazemzadeh-Narbat M, et al. Antimicrobial peptides on calcium phosphate-coated titanium for the prevention of implant-associated infections. Biomaterials. 2010;31(36):9519–26.PubMedCrossRefGoogle Scholar
  13. 13.
    Bir F, et al. Electrochemical depositions of fluorohydroxyapatite doped by Cu 2+, Zn 2+, Ag+ on stainless steel substrates. Appl Surf Sci. 2012;258(18):7021–30.CrossRefGoogle Scholar
  14. 14.
    Huang Y, et al. Osteoblastic cell responses and antibacterial efficacy of Cu/Zn co-substituted hydroxyapatite coatings on pure titanium using electrodeposition method. RSC Adv. 2015;5(22):17076–86.CrossRefGoogle Scholar
  15. 15.
    Chung RJ, et al. Antimicrobial effects and human gingival biocompatibility of hydroxyapatite sol–gel coatings. J Biomed Mater Res B Appl Biomater. 2006;76(1):169–78.PubMedCrossRefGoogle Scholar
  16. 16.
    Ge X, et al. Antibacterial coatings of fluoridated hydroxyapatite for percutaneous implants. J Biomed Mater Res A. 2010;95((2):588–99.CrossRefGoogle Scholar
  17. 17.
    Lee JS, Murphy WL. Functionalizing calcium phosphate biomaterials with antibacterial silver particles. Adv Mater. 2013;25(8):1173–9.PubMedCrossRefGoogle Scholar
  18. 18.
    Ratner BD, et al. Biomaterials science: an introduction to materials in medicine. New York: Academic Press; 2004. p. 10–1.Google Scholar
  19. 19.
    Crubezy E, et al. False teeth of the Roman world. Nature. 1998;391(6662):29.PubMedCrossRefGoogle Scholar
  20. 20.
    Niinomi M, Nakai M, Hieda J. Development of new metallic alloys for biomedical applications. Acta Biomater. 2012;8(11):3888–903.PubMedCrossRefGoogle Scholar
  21. 21.
    Smethurst E. A new stainless steel alloy for surgical implants compared to 316 S12. Biomaterials. 1981;2(2):116–9.PubMedCrossRefGoogle Scholar
  22. 22.
    Talha M, Behera CK, Sinha OP. A review on nickel-free nitrogen containing austenitic stainless steels for biomedical applications. Mater Sci Eng C Mater Biol Appl. 2013;33(7):3563–75.PubMedCrossRefGoogle Scholar
  23. 23.
    Yan Y, Neville A, Dowson D. Tribo-corrosion properties of cobalt-based medical implant alloys in simulated biological environments. Wear. 2007;263(SI2):1105–11.CrossRefGoogle Scholar
  24. 24.
    Narushima T, et al. Precipitates in biomedical Co-Cr alloys. JOM. 2013;65(4):489–504.CrossRefGoogle Scholar
  25. 25.
    Deligianni DD, et al. Effect of surface roughness of the titanium alloy Ti–6Al–4V on human bone marrow cell response and on protein adsorption. Biomaterials. 2001;22(11):1241–51.PubMedCrossRefGoogle Scholar
  26. 26.
    Zheng YF, Gu XN, Witte F. Biodegradable metals. Mater Sci Eng R Rep. 2014;77:1–34.CrossRefGoogle Scholar
  27. 27.
    Hermawan H. Biodegradable metals: from concept to applications. Heidelberg: Springer; 2012.CrossRefGoogle Scholar
  28. 28.
    Paramitha D, et al. Monitoring degradation products and metal ions in vivo. Sawston: Woodhead Publishing; 2016. p. 19.Google Scholar
  29. 29.
    Deligianni DD, et al. Effect of surface roughness of hydroxyapatite on human bone marrow cell adhesion, proliferation, differentiation and detachment strength. Biomaterials. 2000;22(1):87–96.CrossRefGoogle Scholar
  30. 30.
    Khang D, et al. The role of nanometer and sub-micron surface features on vascular and bone cell adhesion on titanium. Biomaterials. 2008;29(8):970–83.PubMedCrossRefGoogle Scholar
  31. 31.
    Anselme K, Bigerelle M. Topography effects of pure titanium substrates on human osteoblast long-term adhesion. Acta Biomater. 2005;1(2):211–22.PubMedCrossRefGoogle Scholar
  32. 32.
    Zinger O, et al. Differential regulation of osteoblasts by substrate microstructural features. Biomaterials. 2005;26(14):1837–47.PubMedCrossRefGoogle Scholar
  33. 33.
    Haq F, et al. Nano-and micro-structured substrates for neuronal cell development. J Biomed Nanotechnol. 2005;1(3):313–9.CrossRefGoogle Scholar
  34. 34.
    Flemming RG, et al. Effects of synthetic micro- and nano-structured surfaces on cell behavior. Biomaterials. 1999;20(6):573–88.PubMedCrossRefGoogle Scholar
  35. 35.
    Benoit DS, Anseth KS. The effect on osteoblast function of colocalized RGD and PHSRN epitopes on PEG surfaces. Biomaterials. 2005;26(25):5209–20.PubMedCrossRefGoogle Scholar
  36. 36.
    Curtis AS, et al. Substratum nanotopography and the adhesion of biological cells. Are symmetry or regularity of nanotopography important? Biophys Chem. 2001;94(3):275–83.PubMedCrossRefGoogle Scholar
  37. 37.
    Rajnicek A, Britland S, McCaig C. Contact guidance of CNS neurites on grooved quartz: influence of groove dimensions, neuronal age and cell type. J Cell Sci. 1997;110(Pt 23):2905–13.PubMedGoogle Scholar
  38. 38.
    Roach P, et al. Modern biomaterials: a review—bulk properties and implications of surface modifications. J Mater Sci Mater Med. 2007;18(7):1263–77.PubMedCrossRefGoogle Scholar
  39. 39.
    Stevens MM. Exploring and engineering the cell-surface interface. Science. 2005;310(5751):1135–8.PubMedCrossRefGoogle Scholar
  40. 40.
    Puleo DA, Nanci A. Understanding and controlling the bone—implant interface. Biomaterials. 1999;20(23):2311–21.PubMedCrossRefGoogle Scholar
  41. 41.
    Tidwell CD, et al. Endothelial cell growth and protein adsorption on terminally functionalized, self-assembled monolayers of alkanethiolates on gold. Langmuir. 1997;13(13):3404–13.CrossRefGoogle Scholar
  42. 42.
    Ohya Y, Matsunami H, Ouchi T. Cell growth on the porous sponges prepared from poly (depsipeptide-co-lactide) having various functional groups. J Biomater Sci Polym Ed. 2004;15(1):111–23.PubMedCrossRefGoogle Scholar
  43. 43.
    Thevenot P, Hu W, Tang L. Surface chemistry influences implant biocompatibility. Curr Top Med Chem. 2008;8(4):270–80.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Wang Y, et al. Effects of the chemical structure and the surface properties of polymeric biomaterials on their biocompatibility. Pharm Res. 2004;21(8):1362–73.PubMedCrossRefGoogle Scholar
  45. 45.
    Wang J, et al. Surface characterization and blood compatibility of poly(ethylene terephthalate) modified by plasma surface grafting. Surf Coat Technol. 2005;196(1):307–11.CrossRefGoogle Scholar
  46. 46.
    Geetha M, et al. Ti based biomaterials, the ultimate choice for orthopaedic implants—a review. Prog Mater Sci. 2009;54(3):397–425.CrossRefGoogle Scholar
  47. 47.
    Paital SR, Dahotre NB. Calcium phosphate coatings for bio-implant applications: materials, performance factors, and methodologies. Mater Sci Eng R Rep. 2009;66(1–3):1–70.CrossRefGoogle Scholar
  48. 48.
    Arima Y, Iwata H. Effect of wettability and surface functional groups on protein adsorption and cell adhesion using well-defined mixed self-assembled monolayers. Biomaterials. 2007;28(20):3074–82.PubMedCrossRefGoogle Scholar
  49. 49.
    Ponsonnet L, et al. Relationship between surface properties (roughness, wettability) of titanium and titanium alloys and cell behaviour. Mater Sci Eng C. 2003;23(4):551–60.CrossRefGoogle Scholar
  50. 50.
    Higuchi A, et al. Chemically modified polysulfone hollow fibers with vinylpyrrolidone having improved blood compatibility. Biomaterials. 2002;23(13):2659–66.PubMedCrossRefGoogle Scholar
  51. 51.
    Song W, Mano JF. Interactions between cells or proteins and surfaces exhibiting extreme wettabilities. Soft Matter. 2013;9(11):2985–99.CrossRefGoogle Scholar
  52. 52.
    Yin H, et al. CO2-induced tunable and reversible surface wettability of honeycomb structured porous films for cell adhesion. Adv Mater Interfaces. 2016;3(7):1500623.CrossRefGoogle Scholar
  53. 53.
    Lai Y, et al. In situ surface-modification-induced superhydrophobic patterns with reversible wettability and adhesion. Adv Mater. 2013;25(12):1682–6.PubMedCrossRefGoogle Scholar
  54. 54.
    Zhu X, et al. Effects of topography and composition of titanium surface oxides on osteoblast responses. Biomaterials. 2004;25(18):4087–103.PubMedCrossRefGoogle Scholar
  55. 55.
    Ner D, McCarthy TJ. Ultrahydrophobic surfaces. Effects of topography length scales on wettability. Langmuir. 2000;16(20):7777–82.CrossRefGoogle Scholar
  56. 56.
    Wei J, et al. Adhesion of mouse fibroblasts on hexamethyldisiloxane surfaces with wide range of wettability. J Biomed Mater Res B Appl Biomater. 2007;81B(1):66–75.CrossRefGoogle Scholar
  57. 57.
    Hanawa T. In vivo metallic biomaterials and surface modification. Mater Sci Eng A. 1999;267(2):260–6.CrossRefGoogle Scholar
  58. 58.
    Wang J, et al. Surface modification of magnesium alloys developed for bioabsorbable orthopedic implants: a general review. J Biomed Mater Res B Appl Biomater. 2012;100B(6):1691–701.CrossRefGoogle Scholar
  59. 59.
    LeGeros RZ. Calcium phosphates in oral biology and medicine. Monogr Oral Sci. 1990;15:1–201.Google Scholar
  60. 60.
    LeGeros RZ, et al. Biphasic calcium phosphate bioceramics: preparation, properties and applications. J Mater Sci Mater Med. 2003;14(3):201–9.PubMedCrossRefGoogle Scholar
  61. 61.
    Ksander GA. Definitions in Biomaterials, progress in biomedical engineering, vol. 4. Ann Plast Surg. 1988;21(3):291.CrossRefGoogle Scholar
  62. 62.
    Hallab NJ, Jacobs JJ. Orthopedic applications. In: Hoffman AS, Schoen FJ, Lemons JE, Hoffman AS, Schoen FJ, Lemons JE, editors. Biomaterials science: an introduction to materials in medicine. 3rd ed. Cambridge, MA: Academic Press; 2013. p. 841–82.CrossRefGoogle Scholar
  63. 63.
    Thomsen P, et al. Structure of the interface between rabbit cortical bone and implants of gold, zirconium and titanium. J Mater Sci Mater Med. 1997;8(11):653–65.PubMedCrossRefGoogle Scholar
  64. 64.
    Liu X, Chu P, Ding C. Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Mater Sci Eng R Rep. 2004;47(3–4):49–121.CrossRefGoogle Scholar
  65. 65.
    Morris HF, et al. Periodontal-type measurements associated with hydroxyapatite-coated and non-HA-coated implants: uncovering to 36 months. Ann Periodontol. 2000;5(1):56–67.PubMedCrossRefGoogle Scholar
  66. 66.
    Geurs NC, et al. Influence of implant geometry and surface characteristics on progressive osseointegration. Int J Oral Maxillofac Implants. 2002;17(6):811–5.PubMedGoogle Scholar
  67. 67.
    Le Guéhennec L, et al. Surface treatments of titanium dental implants for rapid osseointegration. Dent Mater. 2007;23(7):844–54.PubMedCrossRefGoogle Scholar
  68. 68.
    de Jonge LT, et al. Organic–inorganic surface modifications for titanium implant surfaces. Pharm Res. 2008;25(10):2357–69.PubMedCrossRefGoogle Scholar
  69. 69.
    Oliveira AL, Mano JF, Reis RL. Nature-inspired calcium phosphate coatings: present status and novel advances in the science of mimicry. Curr Opin Solid State Mater Sci. 2003;7(4–5):309–18.CrossRefGoogle Scholar
  70. 70.
    Yang Y, Kim K, Ong J. A review on calcium phosphate coatings produced using a sputtering process? An alternative to plasma spraying. Biomaterials. 2005;26(3):327–37.PubMedCrossRefGoogle Scholar
  71. 71.
    Bigi A, et al. Nanocrystalline hydroxyapatite coatings on titanium: a new fast biomimetic method. Biomaterials. 2005;26(19):4085–9.PubMedCrossRefGoogle Scholar
  72. 72.
    de Jonge LT, et al. The osteogenic effect of electrosprayed nanoscale collagen/calcium phosphate coatings on titanium. Biomaterials. 2010;31(9):2461–9.PubMedCrossRefGoogle Scholar
  73. 73.
    Goodman SB, et al. The future of biologic coatings for orthopaedic implants. Biomaterials. 2013;34(13):3174–83.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Siebers MC, et al. Transforming growth factor-beta1 release from a porous electrostatic spray deposition-derived calcium phosphate coating. Tissue Eng. 2006;12(9):2449–56.PubMedCrossRefGoogle Scholar
  75. 75.
    Rammelt S, et al. Coating of titanium implants with collagen, RGD peptide and chondroitin sulfate. Biomaterials. 2006;27(32):5561–71.PubMedCrossRefGoogle Scholar
  76. 76.
    He J, et al. Collagen-infiltrated porous hydroxyapatite coating and its osteogenic properties: in vitro and in vivo study. J Biomed Mater Res A. 2012;100((7):1706–15.CrossRefGoogle Scholar
  77. 77.
    Choi S, Murphy WL. Sustained plasmid DNA release from dissolving mineral coatings. Acta Biomater. 2010;6(9):3426–35.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Shaw BA, Kelly RG. What is corrosion? Electrochem Soc Interface. 2006;15(1):24–7.Google Scholar
  79. 79.
    Walczak J, Shahgaldi F, Heatley F. In vivo corrosion of 316L stainless-steel hip implants: morphology and elemental compositions of corrosion products. Biomaterials. 1998;19(1–3):229–37.PubMedCrossRefGoogle Scholar
  80. 80.
    Hench LL, Ethridge EC. Biomaterials—the interfacial problem. In: Brown JHU, Dickson JF, editors. Advances in biomedical engineering. New York: Academic Press; 1975. p. 35–150.CrossRefGoogle Scholar
  81. 81.
    Mahyudin F, Hermawan H. Biomaterials and medical devices: a perspective from an emerging country. Advanced Structured Materials. Switzerland: Springer; 2016.CrossRefGoogle Scholar
  82. 82.
    Dee KC, Puleo DA, Bizios R. An introduction to tissue-biomaterial interactions. Hoboken, NJ: John Wiley & Sons; 2003.Google Scholar
  83. 83.
    Peuster M, et al. Long-term biocompatibility of a corrodible peripheral iron stent in the porcine descending aorta. Biomaterials. 2006;27(28):4955–62.PubMedCrossRefGoogle Scholar
  84. 84.
    Zhu S, et al. Biocompatibility of Fe–O films synthesized by plasma immersion ion implantation and deposition. Surf Coat Technol. 2009;203(10–11):1523–9.CrossRefGoogle Scholar
  85. 85.
    Zhu S, et al. Corrosion resistance and blood compatibility of lanthanum ion implanted pure iron by MEVVA. Appl Surf Sci. 2009;256(1):99–104.CrossRefGoogle Scholar
  86. 86.
    Chen C, et al. The microstructure and properties of commercial pure iron modified by plasma nitriding. Solid State Ionics. 2008;179(21–26):971–4.CrossRefGoogle Scholar
  87. 87.
    Bowen PK, Drelich J, Goldman J. Zinc exhibits ideal physiological corrosion behavior for bioabsorbable stents. Adv Mater. 2013;25(18):2577–82.PubMedCrossRefGoogle Scholar
  88. 88.
    Vojtěch D, et al. Mechanical and corrosion properties of newly developed biodegradable Zn-based alloys for bone fixation. Acta Biomater. 2011;7(9):3515–22.PubMedCrossRefGoogle Scholar
  89. 89.
    Kuhlmann J, et al. Fast escape of hydrogen from gas cavities around corroding magnesium implants. Acta Biomater. 2013;9(10):8714–21.PubMedCrossRefGoogle Scholar
  90. 90.
    Hornberger H, Virtanen S, Boccaccini AR. Biomedical coatings on magnesium alloys—a review. Acta Biomater. 2012;8(7):2442–55.PubMedCrossRefGoogle Scholar
  91. 91.
    Wu G, Ibrahim JM, Chu PK. Surface design of biodegradable magnesium alloys—a review. Surf Coat Technol. 2013;233:2–12.CrossRefGoogle Scholar
  92. 92.
    Zeng R, et al. Corrosion resistance of calcium-modified zinc phosphate conversion coatings on magnesium–aluminium alloys. Corros Sci. 2014;88:452–9.CrossRefGoogle Scholar
  93. 93.
    Li GY, et al. Growth of zinc phosphate coatings on AZ91D magnesium alloy. Surf Coat Technol. 2006;201(3–4):1814–20.CrossRefGoogle Scholar
  94. 94.
    Su Y, et al. Improvement of the biodegradation property and biomineralization ability of magnesium–hydroxyapatite composites with dicalcium phosphate dihydrate and hydroxyapatite coatings. ACS Biomater Sci Eng. 2016;2(5):818–28.CrossRefGoogle Scholar
  95. 95.
    Chen XB, Birbilis N, Abbott TB. A simple route towards a hydroxyapatite–Mg(OH)2 conversion coating for magnesium. Corros Sci. 2011;53(6):2263–8.CrossRefGoogle Scholar
  96. 96.
    Song Y, et al. Formation mechanism of phosphate conversion film on Mg–8.8Li alloy. Corros Sci. 2009;51(1):62–9.CrossRefGoogle Scholar
  97. 97.
    Su Y, Li G, Lian J. A chemical conversion hydroxyapatite coating on AZ60 magnesium alloy and its electrochemical corrosion behaviour. Int J Electrochem Sci. 2012;7(11):11497–511.Google Scholar
  98. 98.
    Su Y, et al. Composite microstructure and formation mechanism of calcium phosphate conversion coating on magnesium alloy. J Electrochem Soc. 2016;163(9):G138–43.CrossRefGoogle Scholar
  99. 99.
    Su Y, et al. Preparation and corrosion behavior of calcium phosphate and hydroxyapatite conversion coatings on AM60 magnesium alloy. J Electrochem Soc. 2013;160(11):C536–41.CrossRefGoogle Scholar
  100. 100.
    Xu L, et al. In vitro and in vivo evaluation of the surface bioactivity of a calcium phosphate coated magnesium alloy. Biomaterials. 2009;30(8):1512–23.PubMedCrossRefGoogle Scholar
  101. 101.
    Song Y, et al. A novel phosphate conversion film on Mg–8.8Li alloy. Surf Coat Technol. 2009;203(9):1107–13.CrossRefGoogle Scholar
  102. 102.
    Donlan RM, Costerton JW. Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev. 2002;15(2):167–93.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Hook AL, et al. Combinatorial discovery of polymers resistant to bacterial attachment. Nat Biotechnol. 2012;30(9):868–75.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Zhao L, et al. Antibacterial coatings on titanium implants. J Biomed Mater Res B Appl Biomater. 2009;91(1):470–80.PubMedCrossRefGoogle Scholar
  105. 105.
    Stigter M, Groot KD, Layrolle P. Incorporation of tobramycin into biomimetic hydroxyapatite coating on titanium. Biomaterials. 2002;23(20):4143–53.PubMedCrossRefGoogle Scholar
  106. 106.
    Klibanov AM. Permanently microbicidal materials coatings. J Mater Chem. 2007;17(24):2479.CrossRefGoogle Scholar
  107. 107.
    Kohnen W, et al. Development of a long-lasting ventricular catheter impregnated with a combination of antibiotics. Biomaterials. 2003;24(26):4865–9.PubMedCrossRefGoogle Scholar
  108. 108.
    Xie C, et al. Silver nanoparticles and growth factors incorporated hydroxyapatite coatings on metallic implant surfaces for enhancement of osteoinductivity and antibacterial properties. ACS Appl Mater Interfaces. 2014;6(11):8580–9.PubMedCrossRefGoogle Scholar
  109. 109.
    Marambio-Jones C, Hoek EM. A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J Nanopart Res. 2010;12(5):1531–51.CrossRefGoogle Scholar
  110. 110.
    Roy M, et al. Mechanical, in vitro antimicrobial, and biological properties of plasma-sprayed silver-doped hydroxyapatite coating. ACS Appl Mater Interfaces. 2012;4(3):1341–9.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Chen W, et al. Antibacterial and osteogenic properties of silver-containing hydroxyapatite coatings produced using a sol gel process. J Biomed Mater Res A. 2007;82((4):899–906.CrossRefGoogle Scholar
  112. 112.
    Chen W, et al. In vitro anti-bacterial and biological properties of magnetron co-sputtered silver-containing hydroxyapatite coating. Biomaterials. 2006;27(32):5512–7.PubMedCrossRefGoogle Scholar
  113. 113.
    Kazemzadeh-Narbat M, et al. Multilayered coating on titanium for controlled release of antimicrobial peptides for the prevention of implant-associated infections. Biomaterials. 2013;34(24):5969–77.PubMedCrossRefGoogle Scholar
  114. 114.
    Saidin S, et al. Polydopamine as an intermediate layer for silver and hydroxyapatite immobilisation on metallic biomaterials surface. Mater Sci Eng C. 2013;33(8):4715–24.CrossRefGoogle Scholar
  115. 115.
    Suchanek W, Yoshimura M. Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants. J Mater Res. 1998;13(1):94–117.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  • Yingchao Su
    • 1
  • Yufeng Zheng
    • 2
  • Liping Tang
    • 3
  • Yi-Xian Qin
    • 4
  • Donghui Zhu
    • 1
  1. 1.Department of Biomedical EngineeringUniversity of North TexasDentonUSA
  2. 2.Department of Materials Science and Engineering, College of EngineeringPeking UniversityBeijingChina
  3. 3.Department of BioengineeringUniversity of Texas at ArlingtonArlingtonUSA
  4. 4.Department of Biomedical EngineeringStony Brook UniversityStony BrookUSA

Personalised recommendations