Advertisement

Hydroxyapatite: Design with Nature

  • Xiao Yang
Chapter

Abstract

Hydroxyapatite, the basic inorganic material in bone, has been used widely in orthopaedic applications. In this chapter, we report the recent advances in research regarding hydroxyapatite. Biomineralization process as well as synthesis routes of hydroxyapatite is discussed. This chapter also addresses several new features of hydroxyapatite material discovered when co-culturing with different cells. Its traditional as well as the potential future applications are found at the end of the chapter.

Keywords

Biomineralization Intracellular calcium Bone Hydroxyapatite nanoparticles Crystallite growth Bioceramic Hybrid structure Osteogenic differentiation Tumor cell apoptosis Selective effect Orthopedic implant Drug delivery 

Notes

Acknowledgements

The author wishes to thank Professor Xingdong Zhang (National Engineering Research Center for Biomaterials, Sichuan University) for providing insightful comments to this manuscript. The author is grateful to Professor Kai Zhang and Xiangdong Zhu from our research center for their technical guidance.

References

  1. 1.
    Kalita SJ, Bhardwaj A, Bhatt HA. Nanocrystalline calcium phosphate ceramics in biomedical engineering. Mater Sci Eng C Biomim Mater Sensors Syst. 2007;27:441–9. file://localhost/Users/rudihoetzel/Uni/Papers/2007/Kalita/Kalita_Mater. Sci. Eng. C Biomim. Mater. Sens. Syst._2007.pdf%5Cnpapers://66582432-3a6a-44fc-b266-774d13a6b7da/Paper/p2636CrossRefGoogle Scholar
  2. 2.
    Boskey AL. Mineralization of bones and teeth. Elements. 2007;3:385–91.  https://doi.org/10.2113/GSELEMENTS.3.6.385.CrossRefGoogle Scholar
  3. 3.
    Olszta MJ, Cheng X, Jee SS, Kumar R, Kim YY, Kaufman MJ, Douglas EP, Gower LB. Bone structure and formation: a new perspective. Mater Sci Eng R Rep. 2007;58:77–116.  https://doi.org/10.1016/j.mser.2007.05.001.CrossRefGoogle Scholar
  4. 4.
    Weiner S. An overview of biomineralization processes and the problem of the vital effect. Rev Miner Geochem. 2003;54:1–29.  https://doi.org/10.2113/0540001.CrossRefGoogle Scholar
  5. 5.
    Aizenberg J. Skeleton of Euplectella sp.: structural hierarchy from the nanoscale to the macroscale. Science. 2005;309:275–8.  https://doi.org/10.1126/science.1112255.PubMedCrossRefGoogle Scholar
  6. 6.
    Barralet J, Best S, Bonfield W. Carbonate substitution in precipitated hydroxyapatite: an investigation into the effects of reaction temperature and bicarbonate ion concentration. J Biomed Mater Res. 1998;41:79–86.  https://doi.org/10.1002/(SICI)1097-4636(199807)41:1<79::AID-JBM10>3.0.CO;2-C.PubMedCrossRefGoogle Scholar
  7. 7.
    Thompson RB, Reffatto V, Bundy JG, Kortvely E, Flinn JM, Lanzirotti A, Jones EA, McPhail DS, Fearn S, Boldt K, Ueffing M, Ratu SGS, Pauleikhoff L, Bird AC, Lengyel I. Identification of hydroxyapatite spherules provides new insight into subretinal pigment epithelial deposit formation in the aging eye. Proc Natl Acad Sci U S A. 2015;112:1565–70.  https://doi.org/10.1073/pnas.1413347112.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Shih YV, Hwang Y, Phadke A, Kang H, Hwang NS, Caro EJ. Calcium phosphate-bearing matrices induce osteogenic differentiation of stem cells through adenosine signaling. Proc Natl Acad Sci U S A. 2013;111:990–5.  https://doi.org/10.1073/pnas.1321717111.CrossRefGoogle Scholar
  9. 9.
    Beck GR Jr. Inorganic phosphate as a signaling molecule in osteoblast differentiation. J Cell Biochem. 2003;90:234–43.  https://doi.org/10.1002/jcb.10622.PubMedCrossRefGoogle Scholar
  10. 10.
    van Leeuwen JP, van Driel M, van den Bemd GJ, Pols HA. Vitamin D control of osteoblast function and bone extracellular matrix mineralization. Crit Rev Eukaryot Gene Expr. 2001;11:199–226.  https://doi.org/10.1615/CritRevEukarGeneExpr.v11.i1-3.100.PubMedCrossRefGoogle Scholar
  11. 11.
    Jones D, Morgan C, Cockcroft S. Phospholipase D and membrane traffic. Potential roles in regulated exocytosis, membrane delivery and vesicle budding. Biochim Biophys Acta Mol Cell Biol Lipids. 1999;1439:229–44.  https://doi.org/10.1016/S1388-1981(99)00097-9.CrossRefGoogle Scholar
  12. 12.
    Anderson HC. Molecular biology of matrix vesicles. Clin Orthop Relat Res 1995 (314) 266–80.  https://doi.org/10.1097/00003086-199505000-00034.
  13. 13.
    Gericke A, Qin C, Spevak L, Fujimoto Y, Butler WT, Sørensen ES, Boskey AL. Importance of phosphorylation for osteopontin regulation of biomineralization. Calcif Tissue Int. 2005;77:45–54.  https://doi.org/10.1007/s00223-004-1288-1.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Hunter GK, Kyle CL, Goldberg HA. Modulation of crystal formation by bone phosphoproteins: structural specificity of the osteopontin-mediated inhibition of hydroxyapatite formation. Biochem. J. 1994;300(Pt 3):723–8.  https://doi.org/10.1042/bj3020175.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Flores ME, Norgård M, Heinegård D, Reinholt FP, Andersson G. RGD-directed attachment of isolated rat osteoclasts to osteopontin, bone sialoprotein, and fibronectin. Exp Cell Res. 1992;201:526–30.  https://doi.org/10.1016/0014-4827(92)90305-R.PubMedCrossRefGoogle Scholar
  16. 16.
    Addison WN, Nelea V, Chicatun F, Chien YC, Tran-Khanh N, Buschmann MD, Nazhat SN, Kaartinen MT, Vali H, Tecklenburg MM, Franceschi RT, McKee MD. Extracellular matrix mineralization in murine MC3T3-E1 osteoblast cultures: an ultrastructural, compositional and comparative analysis with mouse bone. Bone. 2015;71:244–56.  https://doi.org/10.1016/j.bone.2014.11.003.PubMedCrossRefGoogle Scholar
  17. 17.
    Niu L, Jee SE, Jiao K, Tonggu L, Li M, Wang L, Yang Y, Bian J, Breschi L, Jang SS, Chen J, Pashley DH, Tay FR. Collagen intrafibrillar mineralization as a result of the balance between osmotic equilibrium and electroneutrality. Nat Mater. 2016;16:370–8.  https://doi.org/10.1038/nmat4789.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Miller A, Parker SB. Collagen: the organic matrix of bone. Philos Trans R Soc B Biol Sci. 1984;304:455–77.  https://doi.org/10.1098/rstb.1984.0040.CrossRefGoogle Scholar
  19. 19.
    Weiner S, Traub W. Organization of hydroxyapatite crystals within collagen fibrils. FEBS Lett. 1986;206:262–6.  https://doi.org/10.1016/0014-5793(86)80993-0.PubMedCrossRefGoogle Scholar
  20. 20.
    Orgel JPRO, Irving TC, Miller A, Wess TJ. Microfibrillar structure of type I collagen in situ. Proc Natl Acad Sci U S A. 2006;103:9001–5.  https://doi.org/10.1073/pnas.0502718103.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Mahamid J, Aichmayer B, Shimoni E, Ziblat R, Li C, Siegel S, Paris O, Fratzl P, Weiner S, Addadi L. Mapping amorphous calcium phosphate transformation into crystalline mineral from the cell to the bone in zebrafish fin rays. Proc Natl Acad Sci U S A. 2010;107:6316–21.  https://doi.org/10.1073/pnas.0914218107.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Wang J, Shaw LL. Nanocrystalline hydroxyapatite with simultaneous enhancements in hardness and toughness. Biomaterials. 2009;30:6565–72.  https://doi.org/10.1016/j.biomaterials.2009.08.048.PubMedCrossRefGoogle Scholar
  23. 23.
    Gervaso F, Scalera F, Kunjalukkal Padmanabhan S, Sannino A, Licciulli A. High-performance hydroxyapatite scaffolds for bone tissue engineering applications. Int J Appl Ceram Technol. 2012;9:507–16.  https://doi.org/10.1111/j.1744-7402.2011.02662.x.CrossRefGoogle Scholar
  24. 24.
    Webster TJ, Ergun C, Doremus RH, Siegel RW, Bizios R. Enhanced functions of osteoblasts on nanophase ceramics. Biomaterials. 2000;21:1803–10.  https://doi.org/10.1016/S0142-9612(00)00075-2.PubMedCrossRefGoogle Scholar
  25. 25.
    Webster TJ, Ergun C, Doremus RH, Siegel RW, Bizios R. Enhanced osteoclast-like cell functions on nanophase ceramics. Biomaterials. 2001;22:1327–33.  https://doi.org/10.1016/S0142-9612(00)00285-4.PubMedCrossRefGoogle Scholar
  26. 26.
    Webster TJ, Ergun C, Doremus RH, Siegel RW, Bizios R. Specific proteins mediate enhanced osteoblast adhesion on nanophase ceramics. J Biomed Mater Res. 2000;51:475–83.  https://doi.org/10.1002/1097-4636(20000905)51:3<475::AID-JBM23>3.0.CO;2-9.PubMedCrossRefGoogle Scholar
  27. 27.
    Zhou H, Lee J. Nanoscale hydroxyapatite particles for bone tissue engineering. Acta Biomater. 2011;7:2769–81.  https://doi.org/10.1016/j.actbio.2011.03.019.PubMedCrossRefGoogle Scholar
  28. 28.
    Sadat-Shojai M, Khorasani MT, Dinpanah-Khoshdargi E, Jamshidi A. Synthesis methods for nanosized hydroxyapatite with diverse structures. Acta Biomater. 2013;9:7591–621.  https://doi.org/10.1016/j.actbio.2013.04.012.PubMedCrossRefGoogle Scholar
  29. 29.
    Fox K, Tran PA, Tran N. Recent advances in research applications of nanophase hydroxyapatite. ChemPhysChem. 2012;13:2495–506.  https://doi.org/10.1002/cphc.201200080.PubMedCrossRefGoogle Scholar
  30. 30.
    Dhand V, Rhee KY, Park SJ. The facile and low temperature synthesis of nanophase hydroxyapatite crystals using wet chemistry. Mater Sci Eng C. 2014;36:152–9.  https://doi.org/10.1016/j.msec.2013.11.049.CrossRefGoogle Scholar
  31. 31.
    Santhosh S, Balasivanandha Prabu S. Thermal stability of nano hydroxyapatite synthesized from sea shells through wet chemical synthesis. Mater Lett. 2013;97:121–4.  https://doi.org/10.1016/j.matlet.2013.01.081.CrossRefGoogle Scholar
  32. 32.
    Abidi SSA, Murtaza Q. Synthesis and characterization of nano-hydroxyapatite powder using wet chemical precipitation reaction. J Mater Sci Technol. 2014;30:307–10.  https://doi.org/10.1016/j.jmst.2013.10.011.CrossRefGoogle Scholar
  33. 33.
    Liu W, Qian G, Zhang B, Liu L, Liu H. Facile synthesis of spherical nano hydroxyapatite and its application in photocatalytic degradation of methyl orange dye under UV irradiation. Mater Lett. 2016;178:15–7.  https://doi.org/10.1016/j.matlet.2016.04.175.CrossRefGoogle Scholar
  34. 34.
    Bakan F, Laçin O, Sarac H. A novel low temperature sol-gel synthesis process for thermally stable nano crystalline hydroxyapatite. Powder Technol. 2013;233:295–302.  https://doi.org/10.1016/j.powtec.2012.08.030.CrossRefGoogle Scholar
  35. 35.
    Sanosh KP, Chu M-C, Balakrishnan A, Kim TN, Cho S-J. Preparation and characterization of nano-hydroxyapatite powder using sol-gel technique. Bull Mater Sci. 2009;32:465–70.  https://doi.org/10.1007/s12034-009-0069-x.CrossRefGoogle Scholar
  36. 36.
    Klinkaewnarong J, Utara S. Preparation and characterization of nanohydroxyapatite by modified sol-gel method with natural rubber latex as a templating agent. Inorg Nano-Metal Chem. 2017;47:340–6.  https://doi.org/10.1080/15533174.2016.1186045.CrossRefGoogle Scholar
  37. 37.
    Ben-Arfa BAE, Salvado IMM, Ferreira JMF, Pullar RC. Novel route for rapid sol-gel synthesis of hydroxyapatite, avoiding ageing and using fast drying with a 50-fold to 200-fold reduction in process time. Mater Sci Eng C. 2017;70 (796–804.  https://doi.org/10.1016/j.msec.2016.09.054.CrossRefGoogle Scholar
  38. 38.
    Gao YL, Wang XS, Cui HH, Mu MM, Huang FZ. Microemulsion synthesis of hydroxyapatite nanomaterials and their adsorption behaviors for Cr3+ ions. Russ J Phys Chem A. 2016;90:1039–41.  https://doi.org/10.1134/S0036024416050137.CrossRefGoogle Scholar
  39. 39.
    Song Y, Gao J, Zhang Y, Song S. Preparation and characterization of nano-hydroxyapatite and its competitive adsorption kinetics of copper and lead ions in water. Nanomater Nanotechnol. 2016;6:184798041668080.  https://doi.org/10.1177/1847980416680807.CrossRefGoogle Scholar
  40. 40.
    Ma X, Chen Y, Qian J, Yuan Y, Liu C. Controllable synthesis of spherical hydroxyapatite nanoparticles using inverse microemulsion method. Mater Chem Phys. 2016;183:220–9.  https://doi.org/10.1016/j.matchemphys.2016.08.021.CrossRefGoogle Scholar
  41. 41.
    Chen J, Wen Z, Zhong S, Wang Z, Wu J, Zhang Q. Synthesis of hydroxyapatite nanorods from abalone shells via hydrothermal solid-state conversion. Mater Des. 2015;87:445–9.  https://doi.org/10.1016/j.matdes.2015.08.056.CrossRefGoogle Scholar
  42. 42.
    Ingole VH, Hussein KH, Kashale AA, Gattu KP, Dhanayat SS, Vinchurkar A, Chang J, Ghule AV. Invitro bioactivity and osteogenic activity study of solid state synthesized nano-hydroxyapatite using recycled eggshell bio-waste. Chem Select. 2016;1:3901–8.  https://doi.org/10.1002/slct.201601092.Google Scholar
  43. 43.
    Chen YQ, Xing XF, Gao WM. Synthesis of spherical nano-hydroxyapatite by hydrothermal method with L-lysine template. Key Eng Mater. 2014;633:17–20.  https://doi.org/10.4028/www.scientific.net/KEM.633.17.CrossRefGoogle Scholar
  44. 44.
    Geng Z, Yuan Q, Zhuo X, Li Z, Cui Z, Zhu S, Liang Y, Liu Y, Bao H, Li X, Huo Q, Yang X. Synthesis, characterization, and biological evaluation of nanostructured hydroxyapatite with different dimensions. Nano. 2017;7:38.  https://doi.org/10.3390/nano7020038.Google Scholar
  45. 45.
    Türk S, Altınsoy I, ÇelebiEfe G, Ipek M, Özacar M, Bindal C. Microwave-assisted biomimetic synthesis of hydroxyapatite using different sources of calcium. Mater Sci Eng C. 2017;76:528–35.  https://doi.org/10.1016/j.msec.2017.03.116.CrossRefGoogle Scholar
  46. 46.
    Utara S, Klinkaewnarong J. Preparation of nano-hydroxyapatite particles by ultrasonic method at 25 kHz using natural rubber latex as a templating agent. Chiang Mai J Sci. 2016;43:320–8.Google Scholar
  47. 47.
    Gao X, Song J, Ji P, Zhang X, Li X, Xu X, Wang M, Zhang S, Deng Y, Deng F, Wei S. Polydopamine-templated hydroxyapatite reinforced polycaprolactone composite nanofibers with enhanced cytocompatibility and osteogenesis for bone tissue engineering. ACS Appl Mater Interfaces. 2016;8:3499–515.  https://doi.org/10.1021/acsami.5b12413.PubMedCrossRefGoogle Scholar
  48. 48.
    Sheikh L, Tripathy S, Nayar S. Biomimetic matrix mediated room temperature synthesis and characterization of nano-hydroxyapatite towards targeted drug delivery. RSC Adv. 2016;6:62556–71.  https://doi.org/10.1039/C6RA06759J.CrossRefGoogle Scholar
  49. 49.
    Leena M, Rana D, Webster TJ, Ramalingam M. Accelerated synthesis of biomimetic nano hydroxyapatite using simulated body fluid. Mater Chem Phys. 2016;180:166–72.  https://doi.org/10.1016/j.matchemphys.2016.05.060.CrossRefGoogle Scholar
  50. 50.
    Yoruç ABH, Aydınoğlu A. The precursors effects on biomimetic hydroxyapatite ceramic powders. Mater Sci Eng C. 2017;75:934–46.  https://doi.org/10.1016/j.msec.2017.02.049.CrossRefGoogle Scholar
  51. 51.
    Sunil BR, Jagannatham M. Producing hydroxyapatite from fish bones by heat treatment. Mater Lett. 2016;185:411–4.  https://doi.org/10.1016/j.matlet.2016.09.039.CrossRefGoogle Scholar
  52. 52.
    Wu SC, Hsu HC, Hsu SK, Tseng CP, Ho WF. Preparation and characterization of hydroxyapatite synthesized from oyster shell powders. Adv Powder Technol. 2017;28:1154–8.  https://doi.org/10.1016/j.apt.2017.02.001.CrossRefGoogle Scholar
  53. 53.
    Shavandi A, Bekhit AEDA, Ali A, Sun Z. Synthesis of nano-hydroxyapatite (nHA) from waste mussel shells using a rapid microwave method. Mater Chem Phys. 2015;149:607–16.  https://doi.org/10.1016/j.matchemphys.2014.11.016.CrossRefGoogle Scholar
  54. 54.
    Sadat-Shojai M, Khorasani M-T, Jamshidi A. Hydrothermal processing of hydroxyapatite nanoparticles—a Taguchi experimental design approach. J Cryst Growth. 2012;361:73–84.  https://doi.org/10.1016/j.jcrysgro.2012.09.010.CrossRefGoogle Scholar
  55. 55.
    Xia L, Lin K, Jiang X, Xu Y, Zhang M, Chang J, Zhang Z. Enhanced osteogenesis through nano-structured surface design of macroporous hydroxyapatite bioceramic scaffolds via activation of ERK and p38 MAPK signaling pathways. J Mater Chem B. 2013;1:5403.  https://doi.org/10.1039/c3tb20945h.CrossRefGoogle Scholar
  56. 56.
    Lin K, Xia L, Gan J, Zhang Z, Chen H, Jiang X, Chang J. Tailoring the nanostructured surfaces of hydroxyapatite bioceramics to promote protein adsorption, osteoblast growth, and osteogenic differentiation. ACS Appl Mater Interfaces. 2013;5:8008–17.  https://doi.org/10.1021/am402089w.PubMedCrossRefGoogle Scholar
  57. 57.
    Xia L, Lin K, Jiang X, Fang B, Xu Y, Liu J, Zeng D, Zhang M, Zhang X, Chang J, Zhang Z. Effect of nano-structured bioceramic surface on osteogenic differentiation of adipose derived stem cells. Biomaterials. 2014;35:8514–27.  https://doi.org/10.1016/j.biomaterials.2014.06.028.PubMedCrossRefGoogle Scholar
  58. 58.
    Chen Y, Sun Z, Li Y, Hong Y. Preparation and biological effects of apatite nanosheet-constructed porous ceramics. J Mater Chem B. 2017;5:807–16.  https://doi.org/10.1039/C6TB01902A.CrossRefGoogle Scholar
  59. 59.
    Ye X, Zhou C, Xiao Z, Fan Y, Zhu X, Sun Y, Zhang X. Fabrication and characterization of porous 3D whisker-covered calcium phosphate scaffolds. Mater Lett. 2014;128:179–82.  https://doi.org/10.1016/j.matlet.2014.04.142.CrossRefGoogle Scholar
  60. 60.
    Chen Y, Sun Z, Li Y, Hong Y. Osteogenic commitment of mesenchymal stem cells in apatite nanorod-aligned ceramics. ACS Appl Mater Interfaces. 2014;6:21886–93.  https://doi.org/10.1021/am5064662.PubMedCrossRefGoogle Scholar
  61. 61.
    Lee JH, Rim NG, Jung HS, Shin H. Control of osteogenic differentiation and mineralization of human mesenchymal stem cells on composite nanofibers containing poly [lactic-co-(glycolic acid)] and hydroxyapatite. Macromol Biosci. 2010;10:173–82.  https://doi.org/10.1002/mabi.200900169.PubMedCrossRefGoogle Scholar
  62. 62.
    Hu Q, Tan Z, Liu Y, Tao J, Cai Y, Zhang M, Pan H, Xu X, Tang R. Effect of crystallinity of calcium phosphate nanoparticles on adhesion, proliferation, and differentiation of bone marrow mesenchymal stem cells. J Mater Chem. 2007;17:4690.  https://doi.org/10.1039/b710936a.CrossRefGoogle Scholar
  63. 63.
    Xu Z, Liu C, Wei J, Sun J. Effects of four types of hydroxyapatite nanoparticles with different nanocrystal morphologies and sizes on apoptosis in rat osteoblasts. J Appl Toxicol. 2012;32:429–35.  https://doi.org/10.1002/jat.1745.PubMedCrossRefGoogle Scholar
  64. 64.
    Zhou GS, Su ZY, Cai YR, Liu YK, Dai LC, Tang RK, Zhang M. Different effects of nanophase and conventional hydroxyapatite thin films on attachment, proliferation and osteogenic differentiation of bone marrow derived mesenchymal stem cells. Biomed Mater Eng. 2007;17:387–95. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18032820 PubMedGoogle Scholar
  65. 65.
    Deligianni DD, Katsala ND, Koutsoukos PG, Missirlis YF. Effect of surface roughness of hydroxyapatite on human bone marrow cell adhesion, proliferation, differentiation and detachment strength. Biomaterials. 2001;22:87–96.  https://doi.org/10.1016/S0142-9612(00)00174-5.PubMedCrossRefGoogle Scholar
  66. 66.
    Berube P, Yang Y, Carnes DL, Stover RE, Boland EJ, Ong JL. The effect of sputtered calcium phosphate coatings of different crystallinity on osteoblast differentiation. J Periodontol. 2005;76:1697–709.  https://doi.org/10.1902/jop.2005.76.10.1697.PubMedCrossRefGoogle Scholar
  67. 67.
    dos Santos EA, Farina M, Soares GA, Anselme K. Surface energy of hydroxyapatite and beta-tricalcium phosphate ceramics driving serum protein adsorption and osteoblast adhesion. J Mater Sci Med. 2008;19:2307–16.  https://doi.org/10.1007/s10856-007-3347-4.CrossRefGoogle Scholar
  68. 68.
    Bohner M, Lemaitre J. Can bioactivity be tested in vitro with SBF solution? Biomaterials. 2009;30:2175–9.  https://doi.org/10.1016/j.biomaterials.2009.01.008.PubMedCrossRefGoogle Scholar
  69. 69.
    Meirelles L, Arvidsson A, Andersson M, Kjellin P, Albrektsson T, Wennerberg A. Nano hydroxyapatite structures influence early bone formation. J Biomed Mater Res A. 2008;87:299–307.  https://doi.org/10.1002/jbm.a.31744.PubMedCrossRefGoogle Scholar
  70. 70.
    Okada S, Ito H, Nagai A, Komotori J, Imai H. Adhesion of osteoblast-like cells on nanostructured hydroxyapatite. Acta Biomater. 2010;6:591–7.  https://doi.org/10.1016/j.actbio.2009.07.037.PubMedCrossRefGoogle Scholar
  71. 71.
    Rouahi M, Champion E, Gallet O, Jada A, Anselme K. Physico-chemical characteristics and protein adsorption potential of hydroxyapatite particles: influence on in vitro biocompatibility of ceramics after sintering. Colloids Surf B Biointerfaces. 2006;47:10–9.  https://doi.org/10.1016/j.colsurfb.2005.11.015.PubMedCrossRefGoogle Scholar
  72. 72.
    Kandori K, Murata K, Ishikawa T. Microcalorimetric study of protein adsorption onto calcium hydroxyapatites. Langmuir. 2007;23:2064–70.  https://doi.org/10.1021/la062562n.PubMedCrossRefGoogle Scholar
  73. 73.
    Jung GY, Park YJ, Han JS. Effects of HA released calcium ion on osteoblast differentiation. J Mater Sci Mater Med. 2010;21:1649–54.  https://doi.org/10.1007/s10856-010-4011-y.PubMedCrossRefGoogle Scholar
  74. 74.
    Chen LL, Huang M, Tan JY, Chen XT, Lei LH, Wu YM, Zhang DY. PI3K/AKT pathway involvement in the osteogenic effects of osteoclast culture supernatants on preosteoblast cells. Tissue Eng Part A. 2013;19:2226–32.  https://doi.org/10.1089/ten.TEA.2012.0469.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Chen J, Crawford R, Chen C, Xiao Y. The key regulatory roles of the PI3K/Akt signalling pathway in the functionalities of mesenchymal stem cells and applications in tissue regeneration. Tissue Eng Part B Rev. 2013;19:516–28.  https://doi.org/10.1089/ten.TEB.2012.0672.PubMedCrossRefGoogle Scholar
  76. 76.
    Akeno N, Robins J, Zhang M, Czyzyk-Krzeska MF, Clemens TL. Induction of vascular endothelial growth factor by IGF-I in osteoblast-like cells is mediated by the PI3K signaling pathway through the hypoxia-inducible factor-2alpha. Endocrinology. 2002;143:420–5.  https://doi.org/10.1210/endo.143.2.8639.PubMedCrossRefGoogle Scholar
  77. 77.
    Kanczler JM, Oreffo ROC. Osteogenesis and angiogenesis: the potential for engineering bone. Eur Cell Mater. 2008;15:100–14.  https://doi.org/10.22203/eCM.v015a08.PubMedCrossRefGoogle Scholar
  78. 78.
    Ha SW, Jang HL, Nam KT, Beck GR. Nano-hydroxyapatite modulates osteoblast lineage commitment by stimulation of DNA methylation and regulation of gene expression. Biomaterials. 2015;65:32–42.  https://doi.org/10.1016/j.biomaterials.2015.06.039.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Li B, Guo B, Fan H, Zhang X. Preparation of nano-hydroxyapatite particles with different morphology and their response to highly malignant melanoma cells in vitro. Appl Surf Sci. 2008;255:357–60.  https://doi.org/10.1016/j.apsusc.2008.06.114.CrossRefGoogle Scholar
  80. 80.
    Hong Y, Fan H, Li B, Guo B, Liu M, Zhang X. Fabrication, biological effects, and medical applications of calcium phosphate nanoceramics. Mater Sci Eng R Rep. 2010;70:225–42.  https://doi.org/10.1016/j.mser.2010.06.010.CrossRefGoogle Scholar
  81. 81.
    Chen X, Deng C, Tang S, Zhang M. Mitochondria-dependent apoptosis induced by nanoscale hydroxyapatite in human gastric cancer SGC-7901 cells. Biol Pharm Bull. 2007;30:128–32.  https://doi.org/10.1248/bpb.30.128.PubMedCrossRefGoogle Scholar
  82. 82.
    Shi Z, Huang X, Liu B, Tao H, Cai Y, Tang R. Biological response of osteosarcoma cells to size-controlled nanostructured hydroxyapatite. J Biomater Appl. 2010;25:19–37.  https://doi.org/10.1177/0885328209339396.PubMedCrossRefGoogle Scholar
  83. 83.
    Yuan Y, Liu C, Qian J, Wang J, Zhang Y. Size-mediated cytotoxicity and apoptosis of hydroxyapatite nanoparticles in human hepatoma HepG2 cells. Biomaterials. 2010;31:730–40.  https://doi.org/10.1016/j.biomaterials.2009.09.088.PubMedCrossRefGoogle Scholar
  84. 84.
    Müller KH, Motskin M, Philpott AJ, Routh AF, Shanahan CM, Duer MJ, Skepper JN. The effect of particle agglomeration on the formation of a surface-connected compartment induced by hydroxyapatite nanoparticles inhuman monocyte-derived macrophages. Biomaterials. 2014;35:1074–88.  https://doi.org/10.1016/j.biomaterials.2013.10.041.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Bauer I, Li S-P, Han Y-C, Yuan L, Yin M-Z. Internalization of hydroxyapatite nanoparticles in liver cancer cells. J Mater Sci Mater Med. 2008;19:1091–5.  https://doi.org/10.1007/s10856-007-3124-4.PubMedCrossRefGoogle Scholar
  86. 86.
    Liu ZS, Tang SL, Ai ZL. Effects of hydroxyapatite nanoparticles on proliferation and apoptosis of human hepatoma BEL-7402 cells. World J Gastroenterol. 2003;9:1968–71.  https://doi.org/10.1007/s11051-011-0712-5.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Tay CY, Fang W, Setyawati MI, Chia SL, Tan KS, Hong CHL, Leong DT. Nano-hydroxyapatite and nano-titanium dioxide exhibit different subcellular distribution and apoptotic profile in human oral epithelium. ACS Appl Mater Interfaces. 2014;6:6248–56.  https://doi.org/10.1021/am501266a.PubMedCrossRefGoogle Scholar
  88. 88.
    Han Y, Li S, Cao X, Yuan L, Wang Y, Yin Y, Qiu T, Dai H, Wang X. Different inhibitory effect and mechanism of hydroxyapatite nanoparticles on normal cells and cancer cells in vitro and in vivo. Sci Rep. 2014;4:7134.  https://doi.org/10.1038/srep07134.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Xu J, Xu P, Li Z, Huang J, Yang Z. Oxidative stress and apoptosis induced by hydroxyapatite nanoparticles in C6 cells. J Biomed Mater Res A. 2012;100(A):738–45.  https://doi.org/10.1002/jbm.a.33270.PubMedCrossRefGoogle Scholar
  90. 90.
    Sun J, Ding T. P53 Reaction to apoptosis induced by hydroxy apatite nanoparticles in rat macrophages. J Biomed Mater Res A. 2009;88:673–9.  https://doi.org/10.1002/jbm.a.31892.PubMedCrossRefGoogle Scholar
  91. 91.
    Zhang H, Qing F, Zhao H, Fan H, Liu M, Zhang X. Cellular internalization of rod-like nano hydroxyapatite particles and their size and dose-dependent effects on pre-osteoblasts. J Mater Chem B. 2017;5:1205–17.  https://doi.org/10.1039/C6TB01401A.CrossRefGoogle Scholar
  92. 92.
    Remya NS, Syama S, Gayathri V, Varma HK, Mohanan PV. An in vitro study on the interaction of hydroxyapatite nanoparticles and bone marrow mesenchymal stem cells for assessing the toxicological behaviour. Colloids Surf B Biointerfaces. 2014;117:389–97.  https://doi.org/10.1016/j.colsurfb.2014.02.004.PubMedCrossRefGoogle Scholar
  93. 93.
    Motskin M, Wright DM, Muller K, Kyle N, Gard TG, Porter AE, Skepper JN. Hydroxyapatite nano and microparticles: correlation of particle properties with cytotoxicity and biostability. Biomaterials. 2009;30:3307–17.  https://doi.org/10.1016/j.biomaterials.2009.02.044.PubMedCrossRefGoogle Scholar
  94. 94.
    Chen L, Mccrate JM, Lee JC-M, Li H. The role of surface charge on the uptake and biocompatibility of hydroxyapatite nanoparticles with osteoblast cells. Nanotechnology. 2011;22:105708.  https://doi.org/10.1088/0957-4484/22/10/105708.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Xu JL, Khor KA, Sui JJ, Zhang JH, Chen WN. Protein expression profiles in osteoblasts in response to differentially shaped hydroxyapatite nanoparticles. Biomaterials. 2009;30:5385–91.  https://doi.org/10.1016/j.biomaterials.2009.07.002.PubMedCrossRefGoogle Scholar
  96. 96.
    Cai Y, Liu Y, Yan W, Hu Q, Tao J, Zhang M, Shi Z, Tang R. Role of hydroxyapatite nanoparticle size in bone cell proliferation. J Mater Chem. 2007;17:3780.  https://doi.org/10.1039/b705129h.CrossRefGoogle Scholar
  97. 97.
    Cui X, Liang T, Liu C, Yuan Y, Qian J. Correlation of particle properties with cytotoxicity and cellular uptake of hydroxyapatite nanoparticles in human gastric cancer cells. Mater Sci Eng C. 2016;67:453–60.  https://doi.org/10.1016/j.msec.2016.05.034.CrossRefGoogle Scholar
  98. 98.
    Tang W, Yuan Y, Liu C, Wu Y, Lu X, Qian J. Differential cytotoxicity and particle action of hydroxyapatite nanoparticles in human cancer cells. Nanomedicine. 2014;9:397–412.  https://doi.org/10.2217/nnm.12.217.PubMedCrossRefGoogle Scholar
  99. 99.
    Qing F, Wang Z, Hong Y, Liu M, Guo B, Luo H, Zhang X. Selective effects of hydroxyapatite nanoparticles on osteosarcoma cells and osteoblasts. J Mater Sci Mater Med. 2012;23:2245–51.  https://doi.org/10.1007/s10856-012-4703-6.PubMedCrossRefGoogle Scholar
  100. 100.
    Sun Y, Chen Y, Ma X, Yuan Y, Liu C, Kohn J, Qian J. Mitochondria-targeted hydroxyapatite nanoparticles for selective growth inhibition of lung cancer in vitro and in vivo. ACS Appl Mater Interfaces. 2016;8:25680–90.  https://doi.org/10.1021/acsami.6b06094.PubMedCrossRefGoogle Scholar
  101. 101.
    Müller-Mai CM, Stupp SI, Voigt C, Gross U. Nanoapatite and organoapatite implants in bone: histology and ultrastructure of the interface. J Biomed Mater Res. 1995;29:9–18.  https://doi.org/10.1002/jbm.820290103.PubMedCrossRefGoogle Scholar
  102. 102.
    Klein CPAT, de Blieck-Hogemrst JMA, Wolket JGC, de Groot K. Studies of the solubility of different calcium phosphate ceramic particles in vitro. Biomaterials. 1990;11:509–12.  https://doi.org/10.1016/0142-9612(90)90067-Z.PubMedCrossRefGoogle Scholar
  103. 103.
    Ducheyne P, Radin S, King L. The effect of calcium phosphate ceramic composition and structure onin vitro behavior. I. Dissolution. J Biomed Mater Res. 1993;27:25–34.  https://doi.org/10.1002/jbm.820270105.PubMedCrossRefGoogle Scholar
  104. 104.
    Bell LC, Mika H, Kruger BJ. Synthetic hydroxyapatite-solubility product and stoichiometry of dissolution. Arch Oral Biol. 1978;23:329–36.  https://doi.org/10.1016/0003-9969(78)90089-4.PubMedCrossRefGoogle Scholar
  105. 105.
    Yamasaki H, Sakai H. Osteogenic response to porous hydroxyapatite ceramics under the skin of dogs. Biomaterials. 1992;13:308–12.  https://doi.org/10.1016/0142-9612(92)90054-R.PubMedCrossRefGoogle Scholar
  106. 106.
    Klein C, de Groot K, Chen W, Li Y, Zhang X. Osseous substance formation induced in porous calcium phosphate ceramics in soft tissues. Biomaterials. 1994;15:31–4.  https://doi.org/10.1016/0142-9612(94)90193-7.PubMedCrossRefGoogle Scholar
  107. 107.
    Van Der Stok J, Van Lieshout EMM, El-Massoudi Y, Van Kralingen GH, Patka P. Bone substitutes in the Netherlands—a systematic literature review. Acta Biomater. 2011;7:739–50.  https://doi.org/10.1016/j.actbio.2010.07.035.PubMedCrossRefGoogle Scholar
  108. 108.
    Zhang J, Barbieri D, Ten Hoopen H, De Bruijn JD, Van Blitterswijk CA, Yuan H. Microporous calcium phosphate ceramics driving osteogenesis through surface architecture. J Biomed Mater Res A. 2015;103:1188–99.  https://doi.org/10.1002/jbm.a.35272.PubMedCrossRefGoogle Scholar
  109. 109.
    Ripamonti U. Osteoinduction in porous hydroxyapatite implanted in heterotopic sites of different animal models. Biomaterials. 1996;17:31–5.  https://doi.org/10.1016/0142-9612(96)80752-6.PubMedCrossRefGoogle Scholar
  110. 110.
    Habibovic P, Yuan H, van den Doel M, Sees TM, van Blitterswijk CA, de Groot K. Relevance of osteoinductive biomaterials in critical-sized orthotopic defect. J Orthop Res. 2006;24:867–76.  https://doi.org/10.1002/jor.20115.PubMedCrossRefGoogle Scholar
  111. 111.
    Yuan H, Fernandes H, Habibovic P, de Boer J, Barradas AMC, de Ruiter A, Walsh WR, van Blitterswijk CA, de Bruijn JD. Osteoinductive ceramics as a synthetic alternative to autologous bone grafting. Proc Natl Acad Sci U S A. 2010;107:13614–9.  https://doi.org/10.1073/pnas.1003600107.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Barradas AMC, Yuan H, van Blitterswijk CA, Habibovic P. Osteoinductive biomaterials: current knowledge of properties, experimental models and biological mechanisms. Eur Cell Mater. 2011;21:407–29.PubMedCrossRefGoogle Scholar
  113. 113.
    Habibovic P, Yuan H, Van Der Valk CM, Meijer G, Van Blitterswijk CA, De Groot K. 3D microenvironment as essential element for osteoinduction by biomaterials. Biomaterials. 2005;26:3565–75.  https://doi.org/10.1016/j.biomaterials.2004.09.056.PubMedCrossRefGoogle Scholar
  114. 114.
    Zhang J, Luo X, Barbieri D, Barradas AMC, De Bruijn JD, Van Blitterswijk CA, Yuan H. The size of surface microstructures as an osteogenic factor in calcium phosphate ceramics. Acta Biomater. 2014;10:3254–63.  https://doi.org/10.1016/j.actbio.2014.03.021.PubMedCrossRefGoogle Scholar
  115. 115.
    Kruyt MC, Dhert WJA, Yuan H, Wilson CE, van Blitterswijk CA, Verbout AJ, de Bruijn JD. Bone tissue engineering in a critical size defect compared to ectopic implantations in the goat. J Orthop Res. 2004;22:544–51.  https://doi.org/10.1016/j.orthres.2003.10.010.PubMedCrossRefGoogle Scholar
  116. 116.
    Cho DY, Lee WY, Sheu PC, Chen CC. Cage containing a biphasic calcium phosphate ceramic (Triosite) for the treatment of cervical spondylosis. Surg Neurol. 2005;63:497–503.  https://doi.org/10.1016/j.surneu.2004.10.016.PubMedCrossRefGoogle Scholar
  117. 117.
    Cavagna R, Daculsi G, Bouler JM. Macroporous calcium phosphate ceramic: a prospective study of 106 cases in lumbar spinal fusion. J Long-Term Eff Med Implants. 1999;9:403–12. http://www.ncbi.nlm.nih.gov/pubmed/10847976 PubMedGoogle Scholar
  118. 118.
    Nery EB, Lee KK, Czajkowski S, Dooner JJ, Duggan M, Ellinger RF, Henkin JM, Hines R, Miller M, Olson JW. A Veterans Administration Cooperative Study of biphasic calcium phosphate ceramic in periodontal osseous defects. J Periodontol. 1990;61:737–44.  https://doi.org/10.1902/jop.1990.61.12.737.PubMedCrossRefGoogle Scholar
  119. 119.
    Lindgren C, Mordenfeld A, Johansson CB, Hallman M. A 3-year clinical follow-up of implants placed in two different biomaterials used for sinus augmentation. Int J Oral Maxillofac Implants. 2012;27:1151–62. http://www.ncbi.nlm.nih.gov/pubmed/23057029 PubMedGoogle Scholar
  120. 120.
    Delécrin J, Takahashi S, Gouin F, Passuti N. A synthetic porous ceramic as a bone graft substitute in the surgical management of scoliosis: a prospective, randomized study. Spine (Phila. Pa. 1976). 2000;25:563–9. http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L30158214%5Cnhttp://dx.doi.org/10.1097/00007632-200003010-00006%5Cnhttp://elvis.ubvu.vu.nl:9003/vulink?sid=EMBASE&issn=03622436&id=doi:10.1097/00007632-200003010-00006&atitle=A+synthCrossRefGoogle Scholar
  121. 121.
    Detsch R, Schaefer S, Deisinger U, Ziegler G, Seitz H, Leukers B. In vitro: osteoclastic activity studies on surfaces of 3D printed calcium phosphate scaffolds. J Biomater Appl. 2011;26:359–80.  https://doi.org/10.1177/0885328210373285.PubMedCrossRefGoogle Scholar
  122. 122.
    Nishikawa T, Ookura R, Nishida J, Arai K, Hayashi J, Kurono N, Sawadaishi T, Hara M, Shimomura M. Fabrication of honeycomb film of an amphiphilic copolymer at the air-water interface. Langmuir. 2002;18:5734–40.  https://doi.org/10.1021/la011451f.CrossRefGoogle Scholar
  123. 123.
    Sun F, Zhou H, Lee J. Various preparation methods of highly porous hydroxyapatite/polymer nanoscale biocomposites for bone regeneration. Acta Biomater. 2011;7:3813–28.  https://doi.org/10.1016/j.actbio.2011.07.002.PubMedCrossRefGoogle Scholar
  124. 124.
    Aboudzadeh N, Imani M, Shokrgozar MA, Khavandi A, Javadpour J, Shafieyan Y, Farokhi M. Fabrication and characterization of poly(D,L-lactide-co-glycolide)/hydroxyapatite nanocomposite scaffolds for bone tissue regeneration. J Biomed Mater Res A. 2010;94:137–45.  https://doi.org/10.1002/jbm.a.32673.PubMedCrossRefGoogle Scholar
  125. 125.
    Hutmacher DW. Scaffolds in tissue engineering bone and cartilage. Biomaterials. 2000;21:2529–43.  https://doi.org/10.1016/S0142-9612(00)00121-6.PubMedCrossRefGoogle Scholar
  126. 126.
    Bao M, Wang X, Yuan H, Lou X, Zhao Q, Zhang Y. HAp incorporated ultrafine polymeric fibers with shape memory effect for potential use in bone screw hole healing. J Mater Chem B. 2016;5308:5308–20.  https://doi.org/10.1039/c6tb01305h.CrossRefGoogle Scholar
  127. 127.
    Abe Y, Kokubo T, Yamamuro T. Apatite coating on ceramics, metals and polymers utilizing a biological process. J Mater Sci Mater Med. 1990;1:233–8.  https://doi.org/10.1007/BF00701082.CrossRefGoogle Scholar
  128. 128.
    Lebourg M, Antón JS, Ribelles JLG. Hybrid structure in PCL-HAp scaffold resulting from biomimetic apatite growth. J Mater Sci Mater Med. 2010;21:33–44.  https://doi.org/10.1007/s10856-009-3838-6.PubMedCrossRefGoogle Scholar
  129. 129.
    Kim HM, Himeno T, Kokubo T, Nakamura T. Process and kinetics of bonelike apatite formation on sintered hydroxyapatite in a simulated body fluid. Biomaterials. 2005;26:4366–73.  https://doi.org/10.1016/j.biomaterials.2004.11.022.PubMedCrossRefGoogle Scholar
  130. 130.
    Qiu ZY, Cui Y, Tao CS, Zhang ZQ, Tang PF, Mao KY, Wang XM, Cui FZ. Mineralized collagen: rationale, current status, and clinical applications. Materials (Basel). 2015;8:4733–50.  https://doi.org/10.3390/ma8084733.CrossRefGoogle Scholar
  131. 131.
    Guillaume O, Geven MA, Sprecher CM, Stadelmann VA, Grijpma DW, Tang TT, Qin L, Lai Y, Alini M, de Bruijn JD, Yuan H, Richards RG, Eglin D. Surface-enrichment with hydroxyapatite nanoparticles in stereolithography-fabricated composite polymer scaffolds promotes bone repair. Acta Biomater. 2017;54:386–8.  https://doi.org/10.1016/j.actbio.2017.03.006.PubMedCrossRefGoogle Scholar
  132. 132.
    Dorozhkin S. Bioceramics of calcium orthophosphates. Biomaterials. 2010;31:1465–85.  https://doi.org/10.1016/j.biomaterials.2009.11.050.PubMedCrossRefGoogle Scholar
  133. 133.
    Block MS, Kent JN, Kay JF. Evaluation of hydroxylapatite-coated titanium dental implants in dogs. J Oral Maxillofac Surg. 1987;45:601–7.  https://doi.org/10.1016/0278-2391(87)90270-9.PubMedCrossRefGoogle Scholar
  134. 134.
    Block MS, Finger IM, Fontenot MG, Kent JN. Loaded hydroxylapatite-coated and grit-blasted titanium implants in dogs. Int J Oral Maxillofac Implants. 1989;4:219–25.PubMedGoogle Scholar
  135. 135.
    Lum LB, Beirne OR, Curtis DA. Histologic evaluation of hydroxylapatite-coated versus uncoated titanium blade implants in delayed and immediately loaded applications. Int J Oral Maxillofac Implants. 1991;6:456–62. http://www.ncbi.nlm.nih.gov/pubmed/1820315 PubMedGoogle Scholar
  136. 136.
    Geurs NC, Jeffcoat RL, McGlumphy EA, Reddy MS, Jeffcoat MK. Influence of implant geometry and surface characteristics on progressive osseointegration. Int J Oral Maxillofac Implants. 2002;17:811–5. http://www.ncbi.nlm.nih.gov/pubmed/12507240 PubMedGoogle Scholar
  137. 137.
    Morris HF, Ochi S, Spray JR, Olson JW. Periodontal-type measurements associated with hydroxyapatite-coated and non-HA-coated implants: uncovering to 36 months. Ann Periodontol. 2000;5:56–67.  https://doi.org/10.1902/annals.2000.5.1.56.PubMedCrossRefGoogle Scholar
  138. 138.
    Landor I, Vavrik P, Sosna A, Jahoda D, Hahn H, Daniel M. Hydroxyapatite porous coating and the osteointegration of the total hip replacement. Arch Orthop Trauma Surg. 2007;127:81–9.  https://doi.org/10.1007/s00402-006-0235-1.PubMedCrossRefGoogle Scholar
  139. 139.
    Tanzer M, Gollish J, Leighton R, Orrell K, Giacchino A, Welsh P, Shea B, Wells G. The effect of adjuvant calcium phosphate coating on a porous-coated femoral stem. Clin Orthop Relat Res 2004; (424):153–60. https://doi.org/10.1097/01.blo.0000128282.05708.9a.Google Scholar
  140. 140.
    Johnston DWC, Davies DM, Beaupré LA, Lavoie G. Standard anatomical medullary locking (AML) versus tricalcium phosphate-coated AML femoral prostheses. Can J Surg. 2001;44:421–7.PubMedPubMedCentralGoogle Scholar
  141. 141.
    Lekholm U, Zarb G. Patient selection and preparation. In: Brånemark PI, Zarb GA, Albrektsson T, editors. Tissue integrated prostheses—osseointegration in clinical dentistry. Chicago: Quintessance; 1985. p. 199–209.  https://doi.org/10.1210/jc.2002-021100.Google Scholar
  142. 142.
    Lin X, de Groot K, Wang D, Hu Q, Wismeijer D, Liu Y. A review paper on biomimetic calcium phosphate coatings. Open Biomed Eng J. 2015;9:56–64.  https://doi.org/10.2174/1874120701509010056.PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Shadanbaz S, Dias GJ. Calcium phosphate coatings on magnesium alloys for biomedical applications: a review. Acta Biomater. 2012;8:20–30.  https://doi.org/10.1016/j.actbio.2011.10.016.PubMedCrossRefGoogle Scholar
  144. 144.
    Wang HX, Guan SK, Wang X, Ren CX, Wang LG. In vitro degradation and mechanical integrity of Mg-Zn-Ca alloy coated with Ca-deficient hydroxyapatite by the pulse electrodeposition process. Acta Biomater. 2010;6:1743–8.  https://doi.org/10.1016/j.actbio.2009.12.009.PubMedCrossRefGoogle Scholar
  145. 145.
    Bose S, Tarafder S, Edgington J, Bandyopadhyay A. Calcium phosphate ceramics in drug delivery. JOM. 2011;63:93–8.  https://doi.org/10.1007/s11837-011-0065-7.CrossRefGoogle Scholar
  146. 146.
    Ardura JA, Portal-Núñez S, Lozano D, Gutiérrez-Rojas I, Sánchez-Salcedo S, López-Herradón A, Mulero F, Villanueva-Peñacarrillo ML, Vallet-Regí M, Esbrit P. Local delivery of parathyroid hormone-related protein-derived peptides coated onto a hydroxyapatite-based implant enhances bone regeneration in old and diabetic rats. J Biomed Mater Res A. 2016;104:2060–70.  https://doi.org/10.1002/jbm.a.35742.PubMedCrossRefGoogle Scholar
  147. 147.
    Shi P, Wang Q, Yu C, Fan F, Liu M, Tu M, Lu W, Du M. Hydroxyapatite nanorod and microsphere functionalized with bioactive lactoferrin as a new biomaterial for enhancement bone regeneration. Colloids Surf B Biointerfaces. 2017;155:477–89.  https://doi.org/10.1016/j.colsurfb.2017.04.042.PubMedCrossRefGoogle Scholar
  148. 148.
    Curtin CM, Cunniffe GM, Lyons FG, Bessho K, Dickson GR, Duffy GP, O’Brien FJ. Innovative collagen nano-hydroxyapatite scaffolds offer a highly efficient non-viral gene delivery platform for stem cell-mediated bone formation. Adv Mater. 2012;24:749–54.  https://doi.org/10.1002/adma.201103828.PubMedCrossRefGoogle Scholar
  149. 149.
    Hanifi A, Fathi MH, Sadeghi HM, Varshosaz J. Mg2+ substituted calcium phosphate nano particles synthesis for non viral gene delivery application. J Mater Sci Mater Med. 2010;21:2393–401.  https://doi.org/10.1007/s10856-010-4088-3.PubMedCrossRefGoogle Scholar
  150. 150.
    Quinlan E, Thompson EM, Matsiko A, O’Brien FJ, López-Noriega A. Long-term controlled delivery of rhBMP-2 from collagen-hydroxyapatite scaffolds for superior bone tissue regeneration. J Control Release. 2015;207:112–9.  https://doi.org/10.1016/j.jconrel.2015.03.028.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  1. 1.National Engineering Research Center for BiomaterialsSichuan UniversityChengduChina

Personalised recommendations