Biomaterial-Mediated Drug Delivery in Primary and Metastatic Cancers of the Bone

  • Patrick F. Forde
  • Katie B. Ryan


Cancer can either originate in the bone itself or it is also a major site for metastasis from solid tumors, which frequently have their origins in the breast, prostate or lung. The development of cancer in the bone environment can co-opt many of the normal physiological processes to ensure colonisation and growth in the bone tissue environment. This gives rise to a number of skeletal related events (e.g. pain and fracture) and considerable patient morbidity. Treatment is extremely challenging due to the bone physiology and the heterogeneous and dynamic nature of many tumors. Multidisciplinary management involving chemotherapy, surgery and radiation has enhanced patient’s life expectancy and quality of life. However, outcomes have not improved in recent decades and the prognosis is especially poor in cases of recurrent or metastatic disease. This underscores the critical need to identify novel therapies or indeed to enhance the delivery of existing and emerging drug treatments. In this chapter we review physiological and mechanistic considerations in the development of novel drug delivery approaches with particular emphasis on concepts in bioengineering and biomaterials science. We explore the diversity of technologies and targeting approaches that have been investigated to enhance the delivery of a range of complex cargoes, in the treatment of primary cancers and metastatic bone disease, with a view to summarising the benefits, limitations and current state of progress of biomaterial strategies to improve patient outcomes.


Biomaterial Metastases Bone tissue Polymer Bone cancer Sarcoma Bisphosphonate Targeted delivery Drug delivery Inorganic Calcium phosphate 



The authors would like to thank Dr. Christian Waeber for his helpful comments during the preparation of this chapter.


  1. 1.
    Biermann JS, et al. Bone Cancer. J Natl Compr Cancer Netw. 2013;11(6):688–723.CrossRefGoogle Scholar
  2. 2.
    Lindsey BA, Markel JE, Kleinerman ES. Osteosarcoma overview. Rheumatol Ther. 2017;4(1):25–43.PubMedCrossRefGoogle Scholar
  3. 3.
    Coleman RE. Metastatic bone disease: clinical features, pathophysiology and treatment strategies. Cancer Treat Rev. 2001;27(3):165–76.PubMedCrossRefGoogle Scholar
  4. 4.
    Hauben EI, Hogendoorn PCW. Chapter 1—Epidemiology of primary bone tumors and economical aspects of bone metastases. In: Heymann D, editor. Bone cancer. 2nd ed. San Diego: Academic; 2015. p. 5–10.CrossRefGoogle Scholar
  5. 5.
    Sekita A, Matsugaki A, Nakano T. Disruption of collagen/apatite alignment impairs bone mechanical function in osteoblastic metastasis induced by prostate cancer. Bone. 2017;97:83–93.PubMedCrossRefGoogle Scholar
  6. 6.
    Weilbaecher KN, Guise TA, McCauley LK. Cancer to bone: a fatal attraction. Nat Rev Cancer. 2011;11(6):411–25.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Schroeder A, et al. Treating metastatic cancer with nanotechnology. Nat Rev Cancer. 2012;12(1):39–50.CrossRefGoogle Scholar
  8. 8.
    Whelan J, et al. Incidence and survival of malignant bone sarcomas in England 1979–2007. Int J Cancer. 2012;131(4):E508–17.PubMedCrossRefGoogle Scholar
  9. 9.
    Macedo F, et al. Bone metastases: an overview. Oncol Rev. 2017;11(1):321.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Selvaggi G, Scagliotti GV. Management of bone metastases in cancer: a review. Crit Rev Oncol Hematol. 2005;56(3):365–78.PubMedCrossRefGoogle Scholar
  11. 11.
    Harries M, et al. Incidence of bone metastases and survival after a diagnosis of bone metastases in breast cancer patients. Cancer Epidemiol. 2014;38(4):427–34.PubMedCrossRefGoogle Scholar
  12. 12.
    Chambers AF, Groom AC, MacDonald IC. Metastasis: dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer. 2002;2(8):563–72.PubMedCrossRefGoogle Scholar
  13. 13.
    Coleman R, et al. Bone health in cancer patients: ESMO Clinical Practice Guidelines. Ann Oncol. 2014;25(suppl_3):iii124–37.PubMedCrossRefGoogle Scholar
  14. 14.
    Coleman R. Bone metastases—current status of bone-targeted treatments. In: Heymann D, editor. Bone cancer : primary bone cancers and bone metastases. San Diego: Academic; 2015.Google Scholar
  15. 15.
    Clément-Demange L, Clézardin P. Emerging therapies in bone metastasis. Curr Opin Pharmacol. 2015;22:79–86.PubMedCrossRefGoogle Scholar
  16. 16.
    Guise TA. Breast cancer bone metastases: it’s all about the neighborhood. Cell. 2013;154(5):957–9.PubMedCrossRefGoogle Scholar
  17. 17.
    Alemany-Ribes M, Semino CE. Bioengineering 3D environments for cancer models. Adv Drug Deliv Rev. 2014;79(Supplement C):40–9.PubMedCrossRefGoogle Scholar
  18. 18.
    Lamhamedi-Cherradi S-E, et al. 3D tissue-engineered model of Ewing’s sarcoma. Adv Drug Deliv Rev. 2014;79–80:155–71.PubMedCrossRefGoogle Scholar
  19. 19.
    Fitzgerald KA, et al. Nanoparticle-mediated siRNA delivery assessed in a 3D co-culture model simulating prostate cancer bone metastasis. Int J Pharm. 2016;511(2):1058–69.PubMedCrossRefGoogle Scholar
  20. 20.
    Marques C, et al. Multifunctional materials for bone cancer treatment. Int J Nanomed. 2014;9:2713–25.Google Scholar
  21. 21.
    Evola FR, et al. Biomarkers of osteosarcoma, chondrosarcoma, and Ewing sarcoma. Front Pharmacol. 2017;8:150.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Longhi A, et al. Primary bone osteosarcoma in the pediatric age: state of the art. Cancer Treat Rev. 2006;32(6):423–36.PubMedCrossRefGoogle Scholar
  23. 23.
    Lamplot JD, et al. The current and future therapies for human osteosarcoma. Curr Cancer Ther Rev. 2013;9(1):55–77.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Mirabello L, Troisi RJ, Savage SA. Osteosarcoma incidence and survival rates from 1973 to 2004: data from the surveillance, epidemiology, and end results program. Cancer. 2009;115(7):1531–43.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Ottaviani G, Jaffe N. The epidemiology of osteosarcoma. In: Jaffe N, Bruland OS, Bielack S, editors. Pediatric and adolescent osteosarcoma. Boston, MA: Springer US; 2010. p. 3–13.Google Scholar
  26. 26.
    Guijarro MV, Ghivizzani SC, Gibbs CP. Animal models in osteosarcoma. Front Oncol. 2014;4:189.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Arndt CAS, Crist WM. Common musculoskeletal tumors of childhood and adolescence. N Engl J Med. 1999;341(5):342–52.PubMedCrossRefGoogle Scholar
  28. 28.
    Luetke A, et al. Osteosarcoma treatment—where do we stand? A state of the art review. Cancer Treat Rev. 2014;40(4):523–32.PubMedCrossRefGoogle Scholar
  29. 29.
    Kager L, et al. Primary metastatic osteosarcoma: presentation and outcome of patients treated on neoadjuvant cooperative osteosarcoma study group protocols. J Clin Oncol. 2003;21(10):2011–8.PubMedCrossRefGoogle Scholar
  30. 30.
    Mialou V, et al. Metastatic osteosarcoma at diagnosis. Cancer. 2005;104(5):1100–9.PubMedCrossRefGoogle Scholar
  31. 31.
    Durfee RA, Mohammed M, Luu HH. Review of osteosarcoma and current management. Rheumatol Ther. 2016;3(2):221–43.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Kansara M, et al. Translational biology of osteosarcoma. Nat Rev Cancer. 2014;14(11):722–35.PubMedCrossRefGoogle Scholar
  33. 33.
    Cesare AJ, Reddel RR. Alternative lengthening of telomeres: models, mechanisms and implications. Nat Rev Genet. 2010;11(5):319–30.PubMedCrossRefGoogle Scholar
  34. 34.
    Poos K, et al. Structuring osteosarcoma knowledge: an osteosarcoma-gene association database based on literature mining and manual annotation. Database (Oxford). 2014;2014.Google Scholar
  35. 35.
    Bone sarcomas: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up†. Ann Oncol. 2014;25(suppl_3):iii113–iii123.Google Scholar
  36. 36.
    Heymann D, Redini F. Bone sarcomas: pathogenesis and new therapeutic approaches. IBMS BoneKey. 2011;8(9):402–14.CrossRefGoogle Scholar
  37. 37.
    Toomey EC, Schiffman JD, Lessnick SL. Recent advances in the molecular pathogenesis of Ewing’s sarcoma. Oncogene. 2010;29(32):4504–16.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Hogendoorn PCW, et al. Bone sarcomas: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2010;21(suppl_5):v204–13.PubMedCrossRefGoogle Scholar
  39. 39.
    Gerrand C, et al. UK guidelines for the management of bone sarcomas. Clin Sarcoma Res. 2016;6(1):7.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Chaffer CL, Weinberg RA. A perspective on cancer cell metastasis. Science. 2011;331(6024):1559–64.PubMedCrossRefGoogle Scholar
  41. 41.
    Vincenzi B, et al. Bone metastases in soft tissue sarcoma: a survey of natural history, prognostic value and treatment options. Clin Sarcoma Res. 2013;3(1):6.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Käkönen S-M, Mundy GR. Mechanisms of osteolytic bone metastases in breast carcinoma. Cancer. 2003;97(S3):834–9.PubMedCrossRefGoogle Scholar
  43. 43.
    Mundy GR. Metastasis: metastasis to bone: causes, consequences and therapeutic opportunities. Nat Rev Cancer. 2002;2(8):584–93.PubMedCrossRefGoogle Scholar
  44. 44.
    Krzeszinski JY, Wan Y. New therapeutic targets for cancer bone metastases. Trends Pharmacol Sci. 2015;36(6):360–73.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Coleman RE. Skeletal complications of malignancy. Cancer. 1997;80(8 Suppl):1588–94.PubMedCrossRefGoogle Scholar
  46. 46.
    Paterson AH, et al. Double-blind controlled trial of oral clodronate in patients with bone metastases from breast cancer. J Clin Oncol. 1993;11(1):59–65.PubMedCrossRefGoogle Scholar
  47. 47.
    Ahern E, Doody T, Ryan KB. Bioinspired nanomaterials for bone tissue engineering. In: Tiwari A, Tiwari A, editors. Bioengineered nanomaterials. Boca Raton; London; New York: CRC, Taylor & Francis Group; 2014. p. 369–412.Google Scholar
  48. 48.
    Raggatt LJ, Partridge NC. Cellular and molecular mechanisms of bone remodeling. J Biol Chem. 2010;285(33):25103–8.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Ren G, Esposito M, Kang Y. Bone metastasis and the metastatic niche. J Mol Med. 2015;93(11):1203–12.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Stevens MM. Biomaterials for bone tissue engineering. Mater Today. 2008;11(5):18–25.CrossRefGoogle Scholar
  51. 51.
    Kimura Y, et al. Alteration of osteoblast arrangement via direct attack by cancer cells: new insights into bone metastasis. Sci Rep. 2017;7:44824.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Landis WJ. The strength of a calcified tissue depends in part on the molecular structure and organization of its constituent mineral crystals in their organic matrix. Bone. 1995;16(5):533–44.PubMedCrossRefGoogle Scholar
  53. 53.
    Msaouel P, et al. Bone microenvironment-targeted manipulations for the treatment of osteoblastic metastasis in castration-resistant prostate cancer. Expert Opin Investig Drugs. 2013;22(11):1385–400.PubMedCrossRefGoogle Scholar
  54. 54.
    Sartawi Z, et al. Sphingosine 1-phosphate (S1P) signalling: role in bone biology and potential therapeutic target for bone repair. Pharmacol Res. 2017;125(Part B):232–45.PubMedCrossRefGoogle Scholar
  55. 55.
    Prideaux M, Findlay DM, Atkins GJ. Osteocytes: the master cells in bone remodelling. Curr Opin Pharmacol. 2016;28:24–30.PubMedCrossRefGoogle Scholar
  56. 56.
    Schaffler MB, et al. Osteocytes: master orchestrators of bone. Calcif Tissue Int. 2014;94(1):5–24.PubMedCrossRefGoogle Scholar
  57. 57.
    Bonewald LF. The amazing osteocyte. J Bone Miner Res. 2011;26(2):229–38.PubMedCrossRefGoogle Scholar
  58. 58.
    Lynch ME, Fischbach C. Biomechanical forces in the skeleton and their relevance to bone metastasis: biology and engineering considerations. Adv Drug Deliv Rev. 2014;79–80:119–34.PubMedCrossRefGoogle Scholar
  59. 59.
    Bellido T. Osteocyte apoptosis induces bone resorption and impairs the skeletal response to weightlessness. IBMS BoneKey. 2007;4(9):252–6.CrossRefGoogle Scholar
  60. 60.
    Sekita A, et al. Synchronous disruption of anisotropic arrangement of the osteocyte network and collagen/apatite in melanoma bone metastasis. J Struct Biol. 2017;197(3):260–70.PubMedCrossRefGoogle Scholar
  61. 61.
    Hauge EM, et al. Cancellous bone remodeling occurs in specialized compartments lined by cells expressing osteoblastic markers. J Bone Miner Res. 2001;16(9):1575–82.PubMedCrossRefGoogle Scholar
  62. 62.
    Dwek JR. The periosteum: what is it, where is it, and what mimics it in its absence? Skelet Radiol. 2010;39(4):319–23.CrossRefGoogle Scholar
  63. 63.
    Suda T, et al. Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families. Endocr Rev. 1999;20(3):345–57.PubMedCrossRefGoogle Scholar
  64. 64.
    Boyce BF, Xing L. Biology of RANK, RANKL, and osteoprotegerin. Arthritis Res Ther. 2007;9(Suppl 1):S1.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Wright HL, et al. RANK, RANKL and osteoprotegerin in bone biology and disease. Curr Rev Muscoskelet Med. 2009;2(1):56–64.CrossRefGoogle Scholar
  66. 66.
    Roodman GD. Mechanisms of bone metastasis. N Engl J Med. 2004;350(16):1655–64.PubMedCrossRefGoogle Scholar
  67. 67.
    Yasuda H, et al. Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci U S A. 1998;95(7):3597–602.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Malanchi I, et al. Interactions between cancer stem cells and their niche govern metastatic colonization. Nature. 2012;481(7379):85–9.CrossRefGoogle Scholar
  69. 69.
    Massague J, Obenauf AC. Metastatic colonization by circulating tumour cells. Nature. 2016;529(7586):298–306.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Mlecnik B, et al. The tumor microenvironment and immunoscore are critical determinants of dissemination to distant metastasis. Sci Transl Med. 2016;8(327):327ra26.PubMedCrossRefGoogle Scholar
  71. 71.
    Lambert AW, Pattabiraman DR, Weinberg RA. Emerging biological principles of metastasis. Cell. 2017;168(4):670–91.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Gupta GP, Massagué J. Cancer metastasis: building a framework. Cell. 2006;127(4):679–95.PubMedCrossRefGoogle Scholar
  73. 73.
    Paget S. The distribution of secondary growths in cancer of the breast. Lancet. 1889;133(3421):571–3.CrossRefGoogle Scholar
  74. 74.
    Fidler IJ. The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat Rev Cancer. 2003;3(6):453–8.PubMedCrossRefGoogle Scholar
  75. 75.
    Valastyan S, Weinberg RA. Tumor metastasis: molecular insights and evolving paradigms. Cell. 2011;147(2):275–92.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Peinado H, et al. Pre-metastatic niches: organ-specific homes for metastases. Nat Rev Cancer. 2017;17(5):302–17.PubMedCrossRefGoogle Scholar
  77. 77.
    McAllister SS, et al. Systemic endocrine instigation of indolent tumor growth requires osteopontin. Cell. 2008;133(6):994–1005.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Thiery JP, Lim CT. Tumor dissemination: an EMT affair. Cancer Cell. 2013;23(3):272–3.PubMedCrossRefGoogle Scholar
  79. 79.
    Vanharanta S, Massagué J. Origins of metastatic traits. Cancer Cell. 2013;24(4):410–21.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Guo W, Giancotti FG. Integrin signalling during tumour progression. Nat Rev Mol Cell Biol. 2004;5(10):816–26.PubMedCrossRefGoogle Scholar
  81. 81.
    Balkwill F. Cancer and the chemokine network. Nat Rev Cancer. 2004;4(7):540–50.PubMedCrossRefGoogle Scholar
  82. 82.
    Geminder H, et al. A possible role for CXCR4 and its ligand, the CXC chemokine stromal cell-derived factor-1, in the development of bone marrow metastases in neuroblastoma. J Immunol. 2001;167(8):4747–57.PubMedCrossRefGoogle Scholar
  83. 83.
    Muller A, et al. Involvement of chemokine receptors in breast cancer metastasis. Nature. 2001;410(6824):50–6.PubMedCrossRefGoogle Scholar
  84. 84.
    Sun Y-X, et al. Skeletal localization and neutralization of the SDF-1(CXCL12)/CXCR4 axis blocks prostate cancer metastasis and growth in osseous sites in vivo. J Bone Miner Res. 2005;20(2):318–29.PubMedCrossRefGoogle Scholar
  85. 85.
    Balkwill F. The significance of cancer cell expression of the chemokine receptor CXCR4. Semin Cancer Biol. 2004;14(3):171–9.PubMedCrossRefGoogle Scholar
  86. 86.
    Lehr JE, Pienta KJ. Preferential adhesion of prostate cancer cells to a human bone marrow endothelial cell line. J Natl Cancer Inst. 1998;90(2):118–23.PubMedCrossRefGoogle Scholar
  87. 87.
    Schneider JG, Amend SH, Weilbaecher KN. Integrins and bone metastasis: Integrating tumor cell and stromal cell interactions. Bone. 2011;48(1):54–65.PubMedCrossRefGoogle Scholar
  88. 88.
    Clezardin P. Integrins in bone metastasis formation and potential therapeutic implications. Curr Cancer Drug Targets. 2009;9(7):801–6.PubMedCrossRefGoogle Scholar
  89. 89.
    Nakamura I, et al. Involvement of αvβ3 integrins in osteoclast function. J Bone Miner Metab. 2007;25(6):337–44.PubMedCrossRefGoogle Scholar
  90. 90.
    Mori Y, et al. Anti-α4 integrin antibody suppresses the development of multiple myeloma and associated osteoclastic osteolysis. Blood. 2004;104(7):2149–54.PubMedCrossRefGoogle Scholar
  91. 91.
    Esposito M, Kang Y. Targeting tumor–stromal interactions in bone metastasis. Pharmacol Ther. 2014;141(2):222–33.PubMedCrossRefGoogle Scholar
  92. 92.
    Sipkins DA, et al. In vivo imaging of specialized bone marrow endothelial microdomains for tumor engraftment. Nature. 2005;435(7044):969–73.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Natoni A, Macauley MS, O’Dwyer ME. Targeting selectins and their ligands in cancer. Front Oncol. 2016;6:93.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Burdick MM, et al. Expression of E-selectin ligands on circulating tumor cells: cross-regulation with cancer stem cell regulatory pathways? Front Oncol. 2012;2:103.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Dimitroff CJ, et al. Rolling of human bone-metastatic prostate tumor cells on human bone marrow endothelium under shear flow is mediated by E-selectin. Cancer Res. 2004;64(15):5261–9.PubMedCrossRefGoogle Scholar
  96. 96.
    Ghajar CM. Metastasis prevention by targeting the dormant niche. Nat Rev Cancer. 2015;15(4):238–47.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Lewis Q, Penelope DO, Ingunn H. Bone metastasis: molecular mechanisms implicated in tumour cell dormancy in breast and prostate cancer. Curr Cancer Drug Targets. 2015;15(6):469–80.CrossRefGoogle Scholar
  98. 98.
    Giancotti FG. Mechanisms governing metastatic dormancy and reactivation. Cell. 2013;155(4):750–64.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Bragado P, et al. TGFβ2 dictates disseminated tumour cell fate in target organs through TGFβ-RIII and p38α/β signalling. Nat Cell Biol. 2013;15(11):1351–61.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Kobayashi A, et al. Bone morphogenetic protein 7 in dormancy and metastasis of prostate cancer stem-like cells in bone. J Exp Med. 2011;208(13):2641–55.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Obenauf AC, Massagué J. Surviving at a distance: organ specific metastasis. Trends Cancer. 2015;1(1):76–91.PubMedCentralCrossRefGoogle Scholar
  102. 102.
    Zhang XHF, et al. Latent bone metastasis in breast cancer tied to Src-dependent survival signals. Cancer Cell. 2009;16(1):67–78.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Nadar RA, et al. Bisphosphonate-functionalized imaging agents, anti-tumor agents and nanocarriers for treatment of bone cancer. Adv Healthc Mater. 2017;6(8):1601119–n/a.CrossRefGoogle Scholar
  104. 104.
    Guise TA, et al. Evidence for a causal role of parathyroid hormone-related protein in the pathogenesis of human breast cancer-mediated osteolysis. J Clin Invest. 1996;98(7):1544–9.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Yin JJ, et al. TGF-β signaling blockade inhibits PTHrP secretion by breast cancer cells and bone metastases development. J Clin Invest. 1999;103(2):197–206.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Lynch CC. Matrix metalloproteinases as master regulators of the vicious cycle of bone metastasis. Bone. 2011;48(1):44–53.PubMedCrossRefGoogle Scholar
  107. 107.
    Kang Y, et al. A multigenic program mediating breast cancer metastasis to bone. Cancer Cell. 2003;3(6):537–49.PubMedCrossRefGoogle Scholar
  108. 108.
    Sethi N, et al. Tumor-derived Jagged1 promotes osteolytic bone metastasis of breast cancer by engaging Notch signaling in bone cells. Cancer Cell. 2011;19(2):192–205.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Canon JR, et al. Inhibition of RANKL blocks skeletal tumor progression and improves survival in a mouse model of breast cancer bone metastasis. Clin Exp Metastasis. 2008;25(2):119–29.PubMedCrossRefGoogle Scholar
  110. 110.
    Ikushima H, Miyazono K. TGFβ signalling: a complex web in cancer progression. Nat Rev Cancer. 2010;10(6):415–24.PubMedCrossRefGoogle Scholar
  111. 111.
    Korpal M, et al. Imaging transforming growth factor-[beta] signaling dynamics and therapeutic response in breast cancer bone metastasis. Nat Med. 2009;15(8):960–6.PubMedCrossRefGoogle Scholar
  112. 112.
    Wang H, et al. Bone-in-culture array as a platform to model early-stage bone metastases and discover anti-metastasis therapies. Nat Commun. 2017;8:15045.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Suva LJ, et al. Bone metastasis: mechanisms and therapeutic opportunities. Nat Rev Endocrinol. 2011;7(4):208–18.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Dai X, et al. Review of therapeutic strategies for osteosarcoma, chondrosarcoma, and Ewing’s sarcoma. Med Sci Monit. 2011;17(8):Ra177–90.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Seibel MJ. Clinical use of markers of bone turnover in metastatic bone disease. Nat Clin Pract Oncol. 2005;2(10):504–17.PubMedCrossRefGoogle Scholar
  116. 116.
    Mavrogenis AF, Ruggieri P. Chapter 34—Therapeutic approaches for bone sarcomas A2—Heymann, Dominique. In: Bone cancer. 2nd ed. San Diego: Academic; 2015. p. 407–14.CrossRefGoogle Scholar
  117. 117.
    Whelan J, et al. EURAMOS collaborators. EURAMOS-1, an international randomised study for osteosarcoma: results from pre-randomisation treatment. Ann Oncol. 2015;26:407–14.PubMedCrossRefGoogle Scholar
  118. 118.
    Anninga JK, et al. Chemotherapeutic adjuvant treatment for osteosarcoma: where do we stand? Eur J Cancer. 2011;47(16):2431–45.PubMedCrossRefGoogle Scholar
  119. 119.
    Heare T, Hensley MA, Dell’Orfano S. Bone tumors: osteosarcoma and Ewing’s sarcoma. Curr Opin Pediatr. 2009;21(3):365–72.PubMedCrossRefGoogle Scholar
  120. 120.
    Hattinger CM, et al. Advances in emerging drugs for osteosarcoma. Expert Opin Emerg Drugs. 2015;20(3):495–514.PubMedCrossRefGoogle Scholar
  121. 121.
    Kohno N. Treatment of breast cancer with bone metastasis: bisphosphonate treatment—current and future. Int J Clin Oncol. 2008;13(1):18–23.PubMedCrossRefGoogle Scholar
  122. 122.
    Roelofs AJ, et al. Molecular mechanisms of action of bisphosphonates: current status. Clin Cancer Res. 2006;12(20):6222s–30s.PubMedCrossRefGoogle Scholar
  123. 123.
    Rosen LS, et al. Long-term efficacy and safety of zoledronic acid in the treatment of skeletal metastases in patients with nonsmall cell lung carcinoma and other solid tumors. Cancer. 2004;100(12):2613–21.PubMedCrossRefGoogle Scholar
  124. 124.
    Clemons MJ, et al. Phase II trial evaluating the palliative benefit of second-line zoledronic acid in breast cancer patients with either a skeletal-related event or progressive bone metastases despite first-line bisphosphonate therapy. J Clin Oncol. 2006;24(30):4895–900.PubMedCrossRefGoogle Scholar
  125. 125.
    Akiyama T, Dass CR, Choong PFM. Novel therapeutic strategy for osteosarcoma targeting osteoclast differentiation, bone-resorbing activity, and apoptosis pathway. Mol Cancer Ther. 2008;7(11):3461–9.PubMedCrossRefGoogle Scholar
  126. 126.
    Lacey DL, et al. Bench to bedside: elucidation of the OPG–RANK–RANKL pathway and the development of denosumab. Nat Rev Drug Discov. 2012;11(5):401–19.PubMedCrossRefGoogle Scholar
  127. 127.
    Gül G, et al. A comprehensive review of denosumab for bone metastasis in patients with solid tumors. Curr Med Res Opin. 2016;32(1):133–45.PubMedCrossRefGoogle Scholar
  128. 128.
    Lewiecki EM. RANK ligand inhibition with denosumab for the management of osteoporosis. Expert Opin Biol Ther. 2006;6(10):1041–50.PubMedCrossRefGoogle Scholar
  129. 129.
    Vignani F, et al. Skeletal metastases and impact of anticancer and bone-targeted agents in patients with castration-resistant prostate cancer. Cancer Treat Rev. 2016;44:61–73.PubMedCrossRefGoogle Scholar
  130. 130.
    Botter SM, Neri D, Fuchs B. Recent advances in osteosarcoma. Curr Opin Pharmacol. 2014;16:15–23.PubMedCrossRefGoogle Scholar
  131. 131.
    Body J-J, et al. Systematic review and meta-analysis on the proportion of patients with breast cancer who develop bone metastases. Crit Rev Oncol Hematol. 2017;115:67–80.PubMedCrossRefGoogle Scholar
  132. 132.
    Ta HT, et al. A chitosan-dipotassium orthophosphate hydrogel for the delivery of Doxorubicin in the treatment of osteosarcoma. Biomaterials. 2009;30(21):3605–13.PubMedCrossRefGoogle Scholar
  133. 133.
    Yang L, Webster TJ. Nanotechnology controlled drug delivery for treating bone diseases. Expert Opin Drug Deliv. 2009;6(8):851–64.PubMedCrossRefGoogle Scholar
  134. 134.
    Low SA, Kopecek J. Targeting polymer therapeutics to bone. Adv Drug Deliv Rev. 2012;64(12):1189–204.PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Adjei IM, et al. Inhibition of bone loss with surface-modulated, drug-loaded nanoparticles in an intraosseous model of prostate cancer. J Control Release. 2016;232:83–92.PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Nan M, Yangmei C, Bangcheng Y. Magnesium metal—a potential biomaterial with antibone cancer properties. J Biomed Mater Res A. 2014;102(8):2644–51.PubMedCrossRefGoogle Scholar
  137. 137.
    Iafisco M, Margiotta N. Silica xerogels and hydroxyapatite nanocrystals for the local delivery of platinum-bisphosphonate complexes in the treatment of bone tumors: a mini-review. J Inorg Biochem. 2012;117:237–47.PubMedCrossRefGoogle Scholar
  138. 138.
    Swami A, et al. Engineered nanomedicine for myeloma and bone microenvironment targeting. Proc Natl Acad Sci U S A. 2014;111(28):10287–92.PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Gu W, et al. Nanotechnology in the targeted drug delivery for bone diseases and bone regeneration. Int J Nanomed. 2013;8:2305–17.CrossRefGoogle Scholar
  140. 140.
    Tautzenberger A, Kovtun A, Ignatius A. Nanoparticles and their potential for application in bone. Int J Nanomed. 2012;7:4545–57.CrossRefGoogle Scholar
  141. 141.
    Alexis F, et al. Nanoparticle technologies for cancer therapy. Handb Exp Pharmacol. 2010;197:55–86.CrossRefGoogle Scholar
  142. 142.
    Liu H, Webster TJ. Bioinspired nanocomposites for orthopedic applications. Singapore: World Scientific; 2007.CrossRefGoogle Scholar
  143. 143.
    Vilar G, Tulla-Puche J, Albericio F. Polymers and drug delivery systems. Curr Drug Deliv. 2012;9(4):367–94.PubMedCrossRefGoogle Scholar
  144. 144.
    Miller K, et al. Poly(ethylene glycol)–paclitaxel–alendronate self-assembled micelles for the targeted treatment of breast cancer bone metastases. Biomaterials. 2013;34(15):3795–806.PubMedCrossRefGoogle Scholar
  145. 145.
    de Miguel L, et al. Poly(γ-benzyl-l-glutamate)-PEG-alendronate multivalent nanoparticles for bone targeting. Int J Pharm. 2014;460(1):73–82.PubMedCrossRefGoogle Scholar
  146. 146.
    Segal E, et al. Enhanced anti-tumor activity and safety profile of targeted nano-scaled HPMA copolymer-alendronate-TNP-470 conjugate in the treatment of bone malignances. Biomaterials. 2011;32(19):4450–63.PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Segal E, et al. Targeting angiogenesis-dependent calcified neoplasms using combined polymer therapeutics. PLoS One. 2009;4(4):e5233.PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Nanjwade BK, et al. Dendrimers: emerging polymers for drug-delivery systems. Eur J Pharm Sci. 2009;38(3):185–96.PubMedCrossRefGoogle Scholar
  149. 149.
    Clementi C, et al. Dendritic poly(ethylene glycol) bearing paclitaxel and alendronate for targeting bone neoplasms. Mol Pharm. 2011;8(4):1063–72.PubMedCrossRefGoogle Scholar
  150. 150.
    Galvin P, et al. Nanoparticle-based drug delivery: case studies for cancer and cardiovascular applications. Cell Mol Life Sci. 2012;69(3):389–404.PubMedCrossRefGoogle Scholar
  151. 151.
    Samavedi S, Whittington AR, Goldstein AS. Calcium phosphate ceramics in bone tissue engineering: A review of properties and their influence on cell behavior. Acta Biomater. 2013;9(9):8037–45.PubMedCrossRefGoogle Scholar
  152. 152.
    Verron E, et al. Calcium phosphate biomaterials as bone drug delivery systems: a review. Drug Discov Today. 2010;15(13):547–52.PubMedCrossRefGoogle Scholar
  153. 153.
    O’Sullivan C, et al. A modified surface on titanium deposited by a blasting process. Coatings. 2011;1(1):53–71.CrossRefGoogle Scholar
  154. 154.
    O'Sullivan C, et al. Deposition of substituted apatites with anticolonizing properties onto titanium surfaces using a novel blasting process. J Biomed Mater Res B Appl Biomater. 2010;95B(1):141–9.CrossRefGoogle Scholar
  155. 155.
    Lopez-Heredia MA, et al. An injectable calcium phosphate cement for the local delivery of paclitaxel to bone. Biomaterials. 2011;32(23):5411–6.PubMedCrossRefGoogle Scholar
  156. 156.
    Itokazu M, et al. Development of porous apatite ceramic for local delivery of chemotherapeutic agents. J Biomed Mater Res A. 1998;39(4):536–8.CrossRefGoogle Scholar
  157. 157.
    Palazzo B, et al. Biomimetic hydroxyapatite–drug nanocrystals as potential bone substitutes with antitumor drug delivery properties. Adv Funct Mater. 2007;17(13):2180–8.CrossRefGoogle Scholar
  158. 158.
    Abe T, et al. Intraosseous delivery of paclitaxel-loaded hydroxyapatitealginate composite beads delaying paralysis caused by metastatic spine cancer in rats. J Neurosurg Spine. 2008;9(5):502–10.PubMedCrossRefGoogle Scholar
  159. 159.
    Polo L, et al. Molecular gates in mesoporous bioactive glasses for the treatment of bone tumors and infection. Acta Biomater. 2017;50:114–26.PubMedCrossRefGoogle Scholar
  160. 160.
    He Q, et al. Development of individualized anti-metastasis strategies by engineering nanomedicines. Chem Soc Rev. 2015;44(17):6258–86.PubMedPubMedCentralCrossRefGoogle Scholar
  161. 161.
    Rahim M, et al. Glycation-assisted synthesized gold nanoparticles inhibit growth of bone cancer cells. Colloids Surf B Biointerfaces. 2014;117:473–9.PubMedCrossRefGoogle Scholar
  162. 162.
    Tran PA, et al. Titanium surfaces with adherent selenium nanoclusters as a novel anticancer orthopedic material. J Biomed Mater Res A. 2010;93(4):1417–28.PubMedGoogle Scholar
  163. 163.
    Tran P, Webster TJ. Enhanced osteoblast adhesion on nanostructured selenium compacts for anti-cancer orthopedic applications. Int J Nanomed. 2008;3(3):391–6.Google Scholar
  164. 164.
    Tani T, et al. Doxorubicin-loaded calcium phosphate cement in the management of bone and soft tissue tumors. In Vivo. 2006;20(1):55–60.PubMedGoogle Scholar
  165. 165.
    Sun W, et al. Bone-targeted mesoporous silica nanocarrier anchored by zoledronate for cancer bone metastasis. Langmuir. 2016;32(36):9237–44.PubMedCrossRefGoogle Scholar
  166. 166.
    Sun M, et al. A tissue-engineered therapeutic device inhibits tumor growth in vitro and in vivo. Acta Biomater. 2015;18:21–9.PubMedCrossRefGoogle Scholar
  167. 167.
    Iyer AK, et al. Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discov Today. 2006;11(17):812–8.PubMedCrossRefGoogle Scholar
  168. 168.
    Pignatello R, Sarpietro MG, Castelli F. Synthesis and biological evaluation of a new polymeric conjugate and nanocarrier with osteotropic properties. J Funct Biomater. 2012;3(1):79–99.PubMedPubMedCentralCrossRefGoogle Scholar
  169. 169.
    Grundy M, Coussios C, Carlisle R. Advances in systemic delivery of anti-cancer agents for the treatment of metastatic cancer. Expert Opin Drug Deliv. 2016;13(7):999–1013.PubMedCrossRefGoogle Scholar
  170. 170.
    Doolittle E, et al. Spatiotemporal targeting of a dual-ligand nanoparticle to cancer metastasis. ACS Nano. 2015;9(8):8012–21.PubMedPubMedCentralCrossRefGoogle Scholar
  171. 171.
    Prabhakar U, et al. Challenges and key considerations of the enhanced permeability and retention (EPR) effect for nanomedicine drug delivery in oncology. Cancer Res. 2013;73(8):2412–7.PubMedPubMedCentralCrossRefGoogle Scholar
  172. 172.
    Maeda H. Toward a full understanding of the EPR effect in primary and metastatic tumors as well as issues related to its heterogeneity. Adv Drug Deliv Rev. 2015;91(Supplement C):3–6.PubMedCrossRefGoogle Scholar
  173. 173.
    Greco F, Vicent MJ. Combination therapy: opportunities and challenges for polymer-drug conjugates as anticancer nanomedicines. Adv Drug Deliv Rev. 2009;61(13):1203–13.PubMedCrossRefGoogle Scholar
  174. 174.
    Pignatello R, et al. A novel biomaterial for osteotropic drug nanocarriers: synthesis and biocompatibility evaluation of a PLGA-ALE conjugate. Nanomedicine (Lond). 2009;4(2):161–75.CrossRefGoogle Scholar
  175. 175.
    Mu Q, Wang H, Zhang M. Nanoparticles for imaging and treatment of metastatic breast cancer. Expert Opin Drug Deliv. 2017;14(1):123–36.PubMedCrossRefGoogle Scholar
  176. 176.
    Segal E, Satchi-Fainaro R. Design and development of polymer conjugates as anti-angiogenic agents. Adv Drug Deliv Rev. 2009;61(13):1159–76.PubMedCrossRefGoogle Scholar
  177. 177.
    Ferreira Ddos S, et al. Development of a bone-targeted pH-sensitive liposomal formulation containing doxorubicin: physicochemical characterization, cytotoxicity, and biodistribution evaluation in a mouse model of bone metastasis. Int J Nanomed. 2016;11:3737–51.CrossRefGoogle Scholar
  178. 178.
    Ye WL, et al. Doxorubicin-poly (ethylene glycol)-alendronate self-assembled micelles for targeted therapy of bone metastatic cancer. Sci Rep. 2015;5:14614.PubMedPubMedCentralCrossRefGoogle Scholar
  179. 179.
    Wang D, et al. Bone-targeting macromolecular therapeutics. Adv Drug Deliv Rev. 2005;57(7):1049–76.PubMedCrossRefGoogle Scholar
  180. 180.
    Thamake SI, et al. Alendronate coated poly-lactic-co-glycolic acid (PLGA) nanoparticles for active targeting of metastatic breast cancer. Biomaterials. 2012;33(29):7164–73.PubMedCrossRefGoogle Scholar
  181. 181.
    D'Souza S, et al. Engineering of cell membranes with a bisphosphonate-containing polymer using ATRP synthesis for bone targeting. Biomaterials. 2014;35(35):9447–58.PubMedCrossRefGoogle Scholar
  182. 182.
    Cole LE, Vargo-Gogola T, Roeder RK. Targeted delivery to bone and mineral deposits using bisphosphonate ligands. Adv Drug Deliv Rev. 2016;99(Part A):12–27.PubMedCrossRefGoogle Scholar
  183. 183.
    Neville-Webbe HL, Gnant M, Coleman RE. Potential anticancer properties of bisphosphonates. Semin Oncol. 2010;37:S53–65.PubMedCrossRefGoogle Scholar
  184. 184.
    Nguyen TD, Pitchaimani A, Aryal S. Engineered nanomedicine with alendronic acid corona improves targeting to osteosarcoma. Sci Rep. 2016;6:36707.PubMedPubMedCentralCrossRefGoogle Scholar
  185. 185.
    He Y, et al. Bisphosphonate-functionalized coordination polymer nanoparticles for the treatment of bone metastatic breast cancer. J Control Release. 2017;264(Supplement C):76–88.PubMedCrossRefGoogle Scholar
  186. 186.
    Yin Q, et al. Pamidronate functionalized nanoconjugates for targeted therapy of focal skeletal malignant osteolysis. Proc Natl Acad Sci U S A. 2016;113(32):E4601–9.PubMedPubMedCentralCrossRefGoogle Scholar
  187. 187.
    Murphy MB, et al. Synthesis and in vitro hydroxyapatite binding of peptides conjugated to calcium-binding moieties. Biomacromolecules. 2007;8(7):2237–43.PubMedCrossRefGoogle Scholar
  188. 188.
    Jiang T, et al. Poly aspartic acid peptide-linked PLGA based nanoscale particles: potential for bone-targeting drug delivery applications. Int J Pharm. 2014;475(1):547–57.PubMedCrossRefGoogle Scholar
  189. 189.
    Fu Y-C, et al. Aspartic acid-based modified PLGA–PEG nanoparticles for bone targeting: in vitro and in vivo evaluation. Acta Biomater. 2014;10(11):4583–96.PubMedCrossRefGoogle Scholar
  190. 190.
    Salerno M, et al. Bone-targeted doxorubicin-loaded nanoparticles as a tool for the treatment of skeletal metastases. Curr Cancer Drug Targets. 2010;10(7):649–59.PubMedCrossRefGoogle Scholar
  191. 191.
    Ramanlal Chaudhari K, et al. Bone metastasis targeting: a novel approach to reach bone using Zoledronate anchored PLGA nanoparticle as carrier system loaded with Docetaxel. J Control Release. 2012;158(3):470–8.PubMedCrossRefGoogle Scholar
  192. 192.
    Sutherland M, et al. RGD-binding integrins in prostate cancer: expression patterns and therapeutic prospects against bone metastasis. Cancers. 2012;4(4):1106–46.PubMedPubMedCentralCrossRefGoogle Scholar
  193. 193.
    Desgrosellier JS, Cheresh DA. Integrins in cancer: biological implications and therapeutic opportunities. Nat Rev Cancer. 2010;10(1):9–22.PubMedPubMedCentralCrossRefGoogle Scholar
  194. 194.
    Bakewell SJ, et al. Platelet and osteoclast β3 integrins are critical for bone metastasis. Proc Natl Acad Sci. 2003;100(24):14205–10.PubMedPubMedCentralCrossRefGoogle Scholar
  195. 195.
    Wang F, et al. RGD peptide conjugated liposomal drug delivery system for enhance therapeutic efficacy in treating bone metastasis from prostate cancer. J Control Release. 2014;196:222–33.PubMedCrossRefGoogle Scholar
  196. 196.
    Jubeli E, et al. E-selectin as a target for drug delivery and molecular imaging. J Control Release. 2012;158(2):194–206.PubMedCrossRefGoogle Scholar
  197. 197.
    Price TT, et al. Dormant breast cancer micrometastases reside in specific bone marrow niches that regulate their transit to and from bone. Sci Transl Med. 2016;8(340):340ra73.PubMedCrossRefGoogle Scholar
  198. 198.
    Price TT, Sipkins DA. E-Selectin and SDF-1 regulate metastatic trafficking of breast cancer cells within the bone. Mol Cell Oncol. 2017;4(4):e1214771.PubMedCrossRefGoogle Scholar
  199. 199.
    Morita Y, et al. E-selectin targeting PEGylated-thioaptamer prevents breast cancer metastases. Mol Ther Nucleic Acids. 2016;5(Supplement C):e399.PubMedCrossRefGoogle Scholar
  200. 200.
    Federman N, et al. Enhanced growth inhibition of osteosarcoma by cytotoxic polymerized liposomal nanoparticles targeting the alcam cell surface receptor. Sarcoma. 2012;2012:126906.PubMedPubMedCentralCrossRefGoogle Scholar
  201. 201.
    Mai J, et al. Bone marrow endothelium-targeted therapeutics for metastatic breast cancer. J Control Release. 2014;187:22–9.PubMedPubMedCentralCrossRefGoogle Scholar
  202. 202.
    Mann AP, et al. E-selectin-targeted porous silicon particle for nanoparticle delivery to the bone marrow. Adv Mater. 2011;23(36):H278–82.PubMedCrossRefGoogle Scholar
  203. 203.
    Shamay Y, et al. E-selectin binding peptide–polymer–drug conjugates and their selective cytotoxicity against vascular endothelial cells. Biomaterials. 2009;30(32):6460–8.PubMedCrossRefGoogle Scholar
  204. 204.
    Jubeli E, et al. Preparation of E-selectin-targeting nanoparticles and preliminary in vitro evaluation. Int J Pharm. 2012;426(1):291–301.PubMedCrossRefGoogle Scholar
  205. 205.
    Mo S, et al. Ultrasound-enhanced drug delivery for cancer. Expert Opin Drug Deliv. 2012;9(12):1525–38.PubMedCrossRefGoogle Scholar
  206. 206.
    Mitragotri S. Healing sound: the use of ultrasound in drug delivery and other therapeutic applications. Nat Rev Drug Discov. 2005;4(3):255–60.PubMedCrossRefGoogle Scholar
  207. 207.
    Boissenot T, et al. Ultrasound-triggered drug delivery for cancer treatment using drug delivery systems: From theoretical considerations to practical applications. J Control Release. 2016;241:144–63.PubMedCrossRefGoogle Scholar
  208. 208.
    Napoli A, et al. MR imaging–guided focused ultrasound for treatment of bone metastasis. Radiographics. 2013;33(6):1555–68.PubMedCrossRefGoogle Scholar
  209. 209.
    Rodrigues DB, et al. Focused ultrasound for treatment of bone tumours. Int J Hyperth. 2015;31(3):260–71.CrossRefGoogle Scholar
  210. 210.
    Liberman B, et al. Pain palliation in patients with bone metastases using MR-guided focused ultrasound surgery: a multicenter study. Ann Surg Oncol. 2009;16(1):140–6.PubMedCrossRefGoogle Scholar
  211. 211.
    Huisman M, et al. International consensus on use of focused ultrasound for painful bone metastases: current status and future directions. Int J Hyperth. 2015;31(3):251–9.CrossRefGoogle Scholar
  212. 212.
    Staruch R, Chopra R, Hynynen K. Hyperthermia in bone generated with MR imaging-controlled focused ultrasound: control strategies and drug delivery. Radiology. 2012;263(1):117–27.PubMedCrossRefGoogle Scholar
  213. 213.
    Ta T, Porter TM. Thermosensitive liposomes for localized delivery and triggered release of chemotherapy. J Control Release. 2013;169(1–2):112–25.PubMedPubMedCentralCrossRefGoogle Scholar
  214. 214.
    Sersa G, et al. Electrochemotherapy in treatment of tumours. Eur J Surg Oncol. 2008;34(2):232–40.PubMedCrossRefGoogle Scholar
  215. 215.
    Teissié J, et al. Drug delivery by electropulsation: recent developments in oncology. Int J Pharm. 2012;423(1):3–6.PubMedCrossRefGoogle Scholar
  216. 216.
    Miklavcic D, et al. Importance of tumour coverage by sufficiently high local electric field for effective electrochemotherapy. Eur J Cancer Suppl. 2006;4(11):45–51.CrossRefGoogle Scholar
  217. 217.
    Mir LM. Bases and rationale of the electrochemotherapy. Eur J Cancer Suppl. 2006;4(11):38–44.CrossRefGoogle Scholar
  218. 218.
    Miklavcic D, et al. Electrochemotherapy: from the drawing board into medical practice. Biomed Eng Online. 2014;13:29.PubMedPubMedCentralCrossRefGoogle Scholar
  219. 219.
    Cadossi R, Ronchetti M, Cadossi M. Locally enhanced chemotherapy by electroporation: clinical experiences and perspective of use of electrochemotherapy. Future Oncol. 2014;10(5):877–90.PubMedCrossRefGoogle Scholar
  220. 220.
    Sersa G, et al. Vascular disrupting action of electroporation and electrochemotherapy with bleomycin in murine sarcoma. Br J Cancer. 2008;98(2):388–98.PubMedPubMedCentralCrossRefGoogle Scholar
  221. 221.
    Jarm T, et al. Antivascular effects of electrochemotherapy: implications in treatment of bleeding metastases. Expert Rev Anticancer Ther. 2010;10(5):729–46.PubMedCrossRefGoogle Scholar
  222. 222.
    Miklavcic D, et al. Electrochemotherapy: technological advancements for efficient electroporation-based treatment of internal tumors. Med Biol Eng Comput. 2012;50(12):1213–25.PubMedPubMedCentralCrossRefGoogle Scholar
  223. 223.
    Fini M, et al. Electrochemotherapy is effective in the treatment of rat bone metastases. Clin Exp Metastasis. 2013;30(8):1033–45.PubMedCrossRefGoogle Scholar
  224. 224.
    Bianchi G, Campanacci L, Donati D. Electrochemotherapy in bone metastases: results of a phase II study. In: Janco K, Gregor S, Tamara Lah T, Maja C, Metka F, Simona K, Boštjan M, editors. Conference on Experimental and Translational Oncology. Slovenia: Association of Radiology and Oncology; 2013.Google Scholar
  225. 225.
    Blanco E, Shen H, Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol. 2015;33(9):941–51.PubMedPubMedCentralCrossRefGoogle Scholar
  226. 226.
    Cheng H, et al. Development of nanomaterials for bone-targeted drug delivery. Drug Discov Today. 2017;22(9):1336–50.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Cork Cancer Research Centre, Western Gateway BuildingUniversity College CorkCorkIreland
  2. 2.School of PharmacyUniversity College CorkCorkIreland

Personalised recommendations