Orthopedic Biomaterials pp 569-604 | Cite as
Biomaterial-Mediated Drug Delivery in Primary and Metastatic Cancers of the Bone
Abstract
Cancer can either originate in the bone itself or it is also a major site for metastasis from solid tumors, which frequently have their origins in the breast, prostate or lung. The development of cancer in the bone environment can co-opt many of the normal physiological processes to ensure colonisation and growth in the bone tissue environment. This gives rise to a number of skeletal related events (e.g. pain and fracture) and considerable patient morbidity. Treatment is extremely challenging due to the bone physiology and the heterogeneous and dynamic nature of many tumors. Multidisciplinary management involving chemotherapy, surgery and radiation has enhanced patient’s life expectancy and quality of life. However, outcomes have not improved in recent decades and the prognosis is especially poor in cases of recurrent or metastatic disease. This underscores the critical need to identify novel therapies or indeed to enhance the delivery of existing and emerging drug treatments. In this chapter we review physiological and mechanistic considerations in the development of novel drug delivery approaches with particular emphasis on concepts in bioengineering and biomaterials science. We explore the diversity of technologies and targeting approaches that have been investigated to enhance the delivery of a range of complex cargoes, in the treatment of primary cancers and metastatic bone disease, with a view to summarising the benefits, limitations and current state of progress of biomaterial strategies to improve patient outcomes.
Keywords
Biomaterial Metastases Bone tissue Polymer Bone cancer Sarcoma Bisphosphonate Targeted delivery Drug delivery Inorganic Calcium phosphateNotes
Acknowledgements
The authors would like to thank Dr. Christian Waeber for his helpful comments during the preparation of this chapter.
References
- 1.Biermann JS, et al. Bone Cancer. J Natl Compr Cancer Netw. 2013;11(6):688–723.CrossRefGoogle Scholar
- 2.Lindsey BA, Markel JE, Kleinerman ES. Osteosarcoma overview. Rheumatol Ther. 2017;4(1):25–43.PubMedCrossRefGoogle Scholar
- 3.Coleman RE. Metastatic bone disease: clinical features, pathophysiology and treatment strategies. Cancer Treat Rev. 2001;27(3):165–76.PubMedCrossRefGoogle Scholar
- 4.Hauben EI, Hogendoorn PCW. Chapter 1—Epidemiology of primary bone tumors and economical aspects of bone metastases. In: Heymann D, editor. Bone cancer. 2nd ed. San Diego: Academic; 2015. p. 5–10.CrossRefGoogle Scholar
- 5.Sekita A, Matsugaki A, Nakano T. Disruption of collagen/apatite alignment impairs bone mechanical function in osteoblastic metastasis induced by prostate cancer. Bone. 2017;97:83–93.PubMedCrossRefGoogle Scholar
- 6.Weilbaecher KN, Guise TA, McCauley LK. Cancer to bone: a fatal attraction. Nat Rev Cancer. 2011;11(6):411–25.PubMedPubMedCentralCrossRefGoogle Scholar
- 7.Schroeder A, et al. Treating metastatic cancer with nanotechnology. Nat Rev Cancer. 2012;12(1):39–50.CrossRefGoogle Scholar
- 8.Whelan J, et al. Incidence and survival of malignant bone sarcomas in England 1979–2007. Int J Cancer. 2012;131(4):E508–17.PubMedCrossRefGoogle Scholar
- 9.Macedo F, et al. Bone metastases: an overview. Oncol Rev. 2017;11(1):321.PubMedPubMedCentralCrossRefGoogle Scholar
- 10.Selvaggi G, Scagliotti GV. Management of bone metastases in cancer: a review. Crit Rev Oncol Hematol. 2005;56(3):365–78.PubMedCrossRefGoogle Scholar
- 11.Harries M, et al. Incidence of bone metastases and survival after a diagnosis of bone metastases in breast cancer patients. Cancer Epidemiol. 2014;38(4):427–34.PubMedCrossRefGoogle Scholar
- 12.Chambers AF, Groom AC, MacDonald IC. Metastasis: dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer. 2002;2(8):563–72.PubMedCrossRefGoogle Scholar
- 13.Coleman R, et al. Bone health in cancer patients: ESMO Clinical Practice Guidelines. Ann Oncol. 2014;25(suppl_3):iii124–37.PubMedCrossRefGoogle Scholar
- 14.Coleman R. Bone metastases—current status of bone-targeted treatments. In: Heymann D, editor. Bone cancer : primary bone cancers and bone metastases. San Diego: Academic; 2015.Google Scholar
- 15.Clément-Demange L, Clézardin P. Emerging therapies in bone metastasis. Curr Opin Pharmacol. 2015;22:79–86.PubMedCrossRefGoogle Scholar
- 16.Guise TA. Breast cancer bone metastases: it’s all about the neighborhood. Cell. 2013;154(5):957–9.PubMedCrossRefGoogle Scholar
- 17.Alemany-Ribes M, Semino CE. Bioengineering 3D environments for cancer models. Adv Drug Deliv Rev. 2014;79(Supplement C):40–9.PubMedCrossRefGoogle Scholar
- 18.Lamhamedi-Cherradi S-E, et al. 3D tissue-engineered model of Ewing’s sarcoma. Adv Drug Deliv Rev. 2014;79–80:155–71.PubMedCrossRefGoogle Scholar
- 19.Fitzgerald KA, et al. Nanoparticle-mediated siRNA delivery assessed in a 3D co-culture model simulating prostate cancer bone metastasis. Int J Pharm. 2016;511(2):1058–69.PubMedCrossRefGoogle Scholar
- 20.Marques C, et al. Multifunctional materials for bone cancer treatment. Int J Nanomed. 2014;9:2713–25.Google Scholar
- 21.Evola FR, et al. Biomarkers of osteosarcoma, chondrosarcoma, and Ewing sarcoma. Front Pharmacol. 2017;8:150.PubMedPubMedCentralCrossRefGoogle Scholar
- 22.Longhi A, et al. Primary bone osteosarcoma in the pediatric age: state of the art. Cancer Treat Rev. 2006;32(6):423–36.PubMedCrossRefGoogle Scholar
- 23.Lamplot JD, et al. The current and future therapies for human osteosarcoma. Curr Cancer Ther Rev. 2013;9(1):55–77.PubMedPubMedCentralGoogle Scholar
- 24.Mirabello L, Troisi RJ, Savage SA. Osteosarcoma incidence and survival rates from 1973 to 2004: data from the surveillance, epidemiology, and end results program. Cancer. 2009;115(7):1531–43.PubMedPubMedCentralCrossRefGoogle Scholar
- 25.Ottaviani G, Jaffe N. The epidemiology of osteosarcoma. In: Jaffe N, Bruland OS, Bielack S, editors. Pediatric and adolescent osteosarcoma. Boston, MA: Springer US; 2010. p. 3–13.Google Scholar
- 26.Guijarro MV, Ghivizzani SC, Gibbs CP. Animal models in osteosarcoma. Front Oncol. 2014;4:189.PubMedPubMedCentralCrossRefGoogle Scholar
- 27.Arndt CAS, Crist WM. Common musculoskeletal tumors of childhood and adolescence. N Engl J Med. 1999;341(5):342–52.PubMedCrossRefGoogle Scholar
- 28.Luetke A, et al. Osteosarcoma treatment—where do we stand? A state of the art review. Cancer Treat Rev. 2014;40(4):523–32.PubMedCrossRefGoogle Scholar
- 29.Kager L, et al. Primary metastatic osteosarcoma: presentation and outcome of patients treated on neoadjuvant cooperative osteosarcoma study group protocols. J Clin Oncol. 2003;21(10):2011–8.PubMedCrossRefGoogle Scholar
- 30.Mialou V, et al. Metastatic osteosarcoma at diagnosis. Cancer. 2005;104(5):1100–9.PubMedCrossRefGoogle Scholar
- 31.Durfee RA, Mohammed M, Luu HH. Review of osteosarcoma and current management. Rheumatol Ther. 2016;3(2):221–43.PubMedPubMedCentralCrossRefGoogle Scholar
- 32.Kansara M, et al. Translational biology of osteosarcoma. Nat Rev Cancer. 2014;14(11):722–35.PubMedCrossRefGoogle Scholar
- 33.Cesare AJ, Reddel RR. Alternative lengthening of telomeres: models, mechanisms and implications. Nat Rev Genet. 2010;11(5):319–30.PubMedCrossRefGoogle Scholar
- 34.Poos K, et al. Structuring osteosarcoma knowledge: an osteosarcoma-gene association database based on literature mining and manual annotation. Database (Oxford). 2014;2014.Google Scholar
- 35.Bone sarcomas: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up†. Ann Oncol. 2014;25(suppl_3):iii113–iii123.Google Scholar
- 36.Heymann D, Redini F. Bone sarcomas: pathogenesis and new therapeutic approaches. IBMS BoneKey. 2011;8(9):402–14.CrossRefGoogle Scholar
- 37.Toomey EC, Schiffman JD, Lessnick SL. Recent advances in the molecular pathogenesis of Ewing’s sarcoma. Oncogene. 2010;29(32):4504–16.PubMedPubMedCentralCrossRefGoogle Scholar
- 38.Hogendoorn PCW, et al. Bone sarcomas: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2010;21(suppl_5):v204–13.PubMedCrossRefGoogle Scholar
- 39.Gerrand C, et al. UK guidelines for the management of bone sarcomas. Clin Sarcoma Res. 2016;6(1):7.PubMedPubMedCentralCrossRefGoogle Scholar
- 40.Chaffer CL, Weinberg RA. A perspective on cancer cell metastasis. Science. 2011;331(6024):1559–64.PubMedCrossRefGoogle Scholar
- 41.Vincenzi B, et al. Bone metastases in soft tissue sarcoma: a survey of natural history, prognostic value and treatment options. Clin Sarcoma Res. 2013;3(1):6.PubMedPubMedCentralCrossRefGoogle Scholar
- 42.Käkönen S-M, Mundy GR. Mechanisms of osteolytic bone metastases in breast carcinoma. Cancer. 2003;97(S3):834–9.PubMedCrossRefGoogle Scholar
- 43.Mundy GR. Metastasis: metastasis to bone: causes, consequences and therapeutic opportunities. Nat Rev Cancer. 2002;2(8):584–93.PubMedCrossRefGoogle Scholar
- 44.Krzeszinski JY, Wan Y. New therapeutic targets for cancer bone metastases. Trends Pharmacol Sci. 2015;36(6):360–73.PubMedPubMedCentralCrossRefGoogle Scholar
- 45.Coleman RE. Skeletal complications of malignancy. Cancer. 1997;80(8 Suppl):1588–94.PubMedCrossRefGoogle Scholar
- 46.Paterson AH, et al. Double-blind controlled trial of oral clodronate in patients with bone metastases from breast cancer. J Clin Oncol. 1993;11(1):59–65.PubMedCrossRefGoogle Scholar
- 47.Ahern E, Doody T, Ryan KB. Bioinspired nanomaterials for bone tissue engineering. In: Tiwari A, Tiwari A, editors. Bioengineered nanomaterials. Boca Raton; London; New York: CRC, Taylor & Francis Group; 2014. p. 369–412.Google Scholar
- 48.Raggatt LJ, Partridge NC. Cellular and molecular mechanisms of bone remodeling. J Biol Chem. 2010;285(33):25103–8.PubMedPubMedCentralCrossRefGoogle Scholar
- 49.Ren G, Esposito M, Kang Y. Bone metastasis and the metastatic niche. J Mol Med. 2015;93(11):1203–12.PubMedPubMedCentralCrossRefGoogle Scholar
- 50.Stevens MM. Biomaterials for bone tissue engineering. Mater Today. 2008;11(5):18–25.CrossRefGoogle Scholar
- 51.Kimura Y, et al. Alteration of osteoblast arrangement via direct attack by cancer cells: new insights into bone metastasis. Sci Rep. 2017;7:44824.PubMedPubMedCentralCrossRefGoogle Scholar
- 52.Landis WJ. The strength of a calcified tissue depends in part on the molecular structure and organization of its constituent mineral crystals in their organic matrix. Bone. 1995;16(5):533–44.PubMedCrossRefGoogle Scholar
- 53.Msaouel P, et al. Bone microenvironment-targeted manipulations for the treatment of osteoblastic metastasis in castration-resistant prostate cancer. Expert Opin Investig Drugs. 2013;22(11):1385–400.PubMedCrossRefGoogle Scholar
- 54.Sartawi Z, et al. Sphingosine 1-phosphate (S1P) signalling: role in bone biology and potential therapeutic target for bone repair. Pharmacol Res. 2017;125(Part B):232–45.PubMedCrossRefGoogle Scholar
- 55.Prideaux M, Findlay DM, Atkins GJ. Osteocytes: the master cells in bone remodelling. Curr Opin Pharmacol. 2016;28:24–30.PubMedCrossRefGoogle Scholar
- 56.Schaffler MB, et al. Osteocytes: master orchestrators of bone. Calcif Tissue Int. 2014;94(1):5–24.PubMedCrossRefGoogle Scholar
- 57.Bonewald LF. The amazing osteocyte. J Bone Miner Res. 2011;26(2):229–38.PubMedCrossRefGoogle Scholar
- 58.Lynch ME, Fischbach C. Biomechanical forces in the skeleton and their relevance to bone metastasis: biology and engineering considerations. Adv Drug Deliv Rev. 2014;79–80:119–34.PubMedCrossRefGoogle Scholar
- 59.Bellido T. Osteocyte apoptosis induces bone resorption and impairs the skeletal response to weightlessness. IBMS BoneKey. 2007;4(9):252–6.CrossRefGoogle Scholar
- 60.Sekita A, et al. Synchronous disruption of anisotropic arrangement of the osteocyte network and collagen/apatite in melanoma bone metastasis. J Struct Biol. 2017;197(3):260–70.PubMedCrossRefGoogle Scholar
- 61.Hauge EM, et al. Cancellous bone remodeling occurs in specialized compartments lined by cells expressing osteoblastic markers. J Bone Miner Res. 2001;16(9):1575–82.PubMedCrossRefGoogle Scholar
- 62.Dwek JR. The periosteum: what is it, where is it, and what mimics it in its absence? Skelet Radiol. 2010;39(4):319–23.CrossRefGoogle Scholar
- 63.Suda T, et al. Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families. Endocr Rev. 1999;20(3):345–57.PubMedCrossRefGoogle Scholar
- 64.Boyce BF, Xing L. Biology of RANK, RANKL, and osteoprotegerin. Arthritis Res Ther. 2007;9(Suppl 1):S1.PubMedPubMedCentralCrossRefGoogle Scholar
- 65.Wright HL, et al. RANK, RANKL and osteoprotegerin in bone biology and disease. Curr Rev Muscoskelet Med. 2009;2(1):56–64.CrossRefGoogle Scholar
- 66.Roodman GD. Mechanisms of bone metastasis. N Engl J Med. 2004;350(16):1655–64.PubMedCrossRefGoogle Scholar
- 67.Yasuda H, et al. Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci U S A. 1998;95(7):3597–602.PubMedPubMedCentralCrossRefGoogle Scholar
- 68.Malanchi I, et al. Interactions between cancer stem cells and their niche govern metastatic colonization. Nature. 2012;481(7379):85–9.CrossRefGoogle Scholar
- 69.Massague J, Obenauf AC. Metastatic colonization by circulating tumour cells. Nature. 2016;529(7586):298–306.PubMedPubMedCentralCrossRefGoogle Scholar
- 70.Mlecnik B, et al. The tumor microenvironment and immunoscore are critical determinants of dissemination to distant metastasis. Sci Transl Med. 2016;8(327):327ra26.PubMedCrossRefGoogle Scholar
- 71.Lambert AW, Pattabiraman DR, Weinberg RA. Emerging biological principles of metastasis. Cell. 2017;168(4):670–91.PubMedPubMedCentralCrossRefGoogle Scholar
- 72.Gupta GP, Massagué J. Cancer metastasis: building a framework. Cell. 2006;127(4):679–95.PubMedCrossRefGoogle Scholar
- 73.Paget S. The distribution of secondary growths in cancer of the breast. Lancet. 1889;133(3421):571–3.CrossRefGoogle Scholar
- 74.Fidler IJ. The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat Rev Cancer. 2003;3(6):453–8.PubMedCrossRefGoogle Scholar
- 75.Valastyan S, Weinberg RA. Tumor metastasis: molecular insights and evolving paradigms. Cell. 2011;147(2):275–92.PubMedPubMedCentralCrossRefGoogle Scholar
- 76.Peinado H, et al. Pre-metastatic niches: organ-specific homes for metastases. Nat Rev Cancer. 2017;17(5):302–17.PubMedCrossRefGoogle Scholar
- 77.McAllister SS, et al. Systemic endocrine instigation of indolent tumor growth requires osteopontin. Cell. 2008;133(6):994–1005.PubMedPubMedCentralCrossRefGoogle Scholar
- 78.Thiery JP, Lim CT. Tumor dissemination: an EMT affair. Cancer Cell. 2013;23(3):272–3.PubMedCrossRefGoogle Scholar
- 79.Vanharanta S, Massagué J. Origins of metastatic traits. Cancer Cell. 2013;24(4):410–21.PubMedPubMedCentralCrossRefGoogle Scholar
- 80.Guo W, Giancotti FG. Integrin signalling during tumour progression. Nat Rev Mol Cell Biol. 2004;5(10):816–26.PubMedCrossRefGoogle Scholar
- 81.Balkwill F. Cancer and the chemokine network. Nat Rev Cancer. 2004;4(7):540–50.PubMedCrossRefGoogle Scholar
- 82.Geminder H, et al. A possible role for CXCR4 and its ligand, the CXC chemokine stromal cell-derived factor-1, in the development of bone marrow metastases in neuroblastoma. J Immunol. 2001;167(8):4747–57.PubMedCrossRefGoogle Scholar
- 83.Muller A, et al. Involvement of chemokine receptors in breast cancer metastasis. Nature. 2001;410(6824):50–6.PubMedCrossRefGoogle Scholar
- 84.Sun Y-X, et al. Skeletal localization and neutralization of the SDF-1(CXCL12)/CXCR4 axis blocks prostate cancer metastasis and growth in osseous sites in vivo. J Bone Miner Res. 2005;20(2):318–29.PubMedCrossRefGoogle Scholar
- 85.Balkwill F. The significance of cancer cell expression of the chemokine receptor CXCR4. Semin Cancer Biol. 2004;14(3):171–9.PubMedCrossRefGoogle Scholar
- 86.Lehr JE, Pienta KJ. Preferential adhesion of prostate cancer cells to a human bone marrow endothelial cell line. J Natl Cancer Inst. 1998;90(2):118–23.PubMedCrossRefGoogle Scholar
- 87.Schneider JG, Amend SH, Weilbaecher KN. Integrins and bone metastasis: Integrating tumor cell and stromal cell interactions. Bone. 2011;48(1):54–65.PubMedCrossRefGoogle Scholar
- 88.Clezardin P. Integrins in bone metastasis formation and potential therapeutic implications. Curr Cancer Drug Targets. 2009;9(7):801–6.PubMedCrossRefGoogle Scholar
- 89.Nakamura I, et al. Involvement of αvβ3 integrins in osteoclast function. J Bone Miner Metab. 2007;25(6):337–44.PubMedCrossRefGoogle Scholar
- 90.Mori Y, et al. Anti-α4 integrin antibody suppresses the development of multiple myeloma and associated osteoclastic osteolysis. Blood. 2004;104(7):2149–54.PubMedCrossRefGoogle Scholar
- 91.Esposito M, Kang Y. Targeting tumor–stromal interactions in bone metastasis. Pharmacol Ther. 2014;141(2):222–33.PubMedCrossRefGoogle Scholar
- 92.Sipkins DA, et al. In vivo imaging of specialized bone marrow endothelial microdomains for tumor engraftment. Nature. 2005;435(7044):969–73.PubMedPubMedCentralCrossRefGoogle Scholar
- 93.Natoni A, Macauley MS, O’Dwyer ME. Targeting selectins and their ligands in cancer. Front Oncol. 2016;6:93.PubMedPubMedCentralCrossRefGoogle Scholar
- 94.Burdick MM, et al. Expression of E-selectin ligands on circulating tumor cells: cross-regulation with cancer stem cell regulatory pathways? Front Oncol. 2012;2:103.PubMedPubMedCentralCrossRefGoogle Scholar
- 95.Dimitroff CJ, et al. Rolling of human bone-metastatic prostate tumor cells on human bone marrow endothelium under shear flow is mediated by E-selectin. Cancer Res. 2004;64(15):5261–9.PubMedCrossRefGoogle Scholar
- 96.Ghajar CM. Metastasis prevention by targeting the dormant niche. Nat Rev Cancer. 2015;15(4):238–47.PubMedPubMedCentralCrossRefGoogle Scholar
- 97.Lewis Q, Penelope DO, Ingunn H. Bone metastasis: molecular mechanisms implicated in tumour cell dormancy in breast and prostate cancer. Curr Cancer Drug Targets. 2015;15(6):469–80.CrossRefGoogle Scholar
- 98.Giancotti FG. Mechanisms governing metastatic dormancy and reactivation. Cell. 2013;155(4):750–64.PubMedPubMedCentralCrossRefGoogle Scholar
- 99.Bragado P, et al. TGFβ2 dictates disseminated tumour cell fate in target organs through TGFβ-RIII and p38α/β signalling. Nat Cell Biol. 2013;15(11):1351–61.PubMedPubMedCentralCrossRefGoogle Scholar
- 100.Kobayashi A, et al. Bone morphogenetic protein 7 in dormancy and metastasis of prostate cancer stem-like cells in bone. J Exp Med. 2011;208(13):2641–55.PubMedPubMedCentralCrossRefGoogle Scholar
- 101.Obenauf AC, Massagué J. Surviving at a distance: organ specific metastasis. Trends Cancer. 2015;1(1):76–91.PubMedCentralCrossRefGoogle Scholar
- 102.Zhang XHF, et al. Latent bone metastasis in breast cancer tied to Src-dependent survival signals. Cancer Cell. 2009;16(1):67–78.PubMedPubMedCentralCrossRefGoogle Scholar
- 103.Nadar RA, et al. Bisphosphonate-functionalized imaging agents, anti-tumor agents and nanocarriers for treatment of bone cancer. Adv Healthc Mater. 2017;6(8):1601119–n/a.CrossRefGoogle Scholar
- 104.Guise TA, et al. Evidence for a causal role of parathyroid hormone-related protein in the pathogenesis of human breast cancer-mediated osteolysis. J Clin Invest. 1996;98(7):1544–9.PubMedPubMedCentralCrossRefGoogle Scholar
- 105.Yin JJ, et al. TGF-β signaling blockade inhibits PTHrP secretion by breast cancer cells and bone metastases development. J Clin Invest. 1999;103(2):197–206.PubMedPubMedCentralCrossRefGoogle Scholar
- 106.Lynch CC. Matrix metalloproteinases as master regulators of the vicious cycle of bone metastasis. Bone. 2011;48(1):44–53.PubMedCrossRefGoogle Scholar
- 107.Kang Y, et al. A multigenic program mediating breast cancer metastasis to bone. Cancer Cell. 2003;3(6):537–49.PubMedCrossRefGoogle Scholar
- 108.Sethi N, et al. Tumor-derived Jagged1 promotes osteolytic bone metastasis of breast cancer by engaging Notch signaling in bone cells. Cancer Cell. 2011;19(2):192–205.PubMedPubMedCentralCrossRefGoogle Scholar
- 109.Canon JR, et al. Inhibition of RANKL blocks skeletal tumor progression and improves survival in a mouse model of breast cancer bone metastasis. Clin Exp Metastasis. 2008;25(2):119–29.PubMedCrossRefGoogle Scholar
- 110.Ikushima H, Miyazono K. TGFβ signalling: a complex web in cancer progression. Nat Rev Cancer. 2010;10(6):415–24.PubMedCrossRefGoogle Scholar
- 111.Korpal M, et al. Imaging transforming growth factor-[beta] signaling dynamics and therapeutic response in breast cancer bone metastasis. Nat Med. 2009;15(8):960–6.PubMedCrossRefGoogle Scholar
- 112.Wang H, et al. Bone-in-culture array as a platform to model early-stage bone metastases and discover anti-metastasis therapies. Nat Commun. 2017;8:15045.PubMedPubMedCentralCrossRefGoogle Scholar
- 113.Suva LJ, et al. Bone metastasis: mechanisms and therapeutic opportunities. Nat Rev Endocrinol. 2011;7(4):208–18.PubMedPubMedCentralCrossRefGoogle Scholar
- 114.Dai X, et al. Review of therapeutic strategies for osteosarcoma, chondrosarcoma, and Ewing’s sarcoma. Med Sci Monit. 2011;17(8):Ra177–90.PubMedPubMedCentralCrossRefGoogle Scholar
- 115.Seibel MJ. Clinical use of markers of bone turnover in metastatic bone disease. Nat Clin Pract Oncol. 2005;2(10):504–17.PubMedCrossRefGoogle Scholar
- 116.Mavrogenis AF, Ruggieri P. Chapter 34—Therapeutic approaches for bone sarcomas A2—Heymann, Dominique. In: Bone cancer. 2nd ed. San Diego: Academic; 2015. p. 407–14.CrossRefGoogle Scholar
- 117.Whelan J, et al. EURAMOS collaborators. EURAMOS-1, an international randomised study for osteosarcoma: results from pre-randomisation treatment. Ann Oncol. 2015;26:407–14.PubMedCrossRefGoogle Scholar
- 118.Anninga JK, et al. Chemotherapeutic adjuvant treatment for osteosarcoma: where do we stand? Eur J Cancer. 2011;47(16):2431–45.PubMedCrossRefGoogle Scholar
- 119.Heare T, Hensley MA, Dell’Orfano S. Bone tumors: osteosarcoma and Ewing’s sarcoma. Curr Opin Pediatr. 2009;21(3):365–72.PubMedCrossRefGoogle Scholar
- 120.Hattinger CM, et al. Advances in emerging drugs for osteosarcoma. Expert Opin Emerg Drugs. 2015;20(3):495–514.PubMedCrossRefGoogle Scholar
- 121.Kohno N. Treatment of breast cancer with bone metastasis: bisphosphonate treatment—current and future. Int J Clin Oncol. 2008;13(1):18–23.PubMedCrossRefGoogle Scholar
- 122.Roelofs AJ, et al. Molecular mechanisms of action of bisphosphonates: current status. Clin Cancer Res. 2006;12(20):6222s–30s.PubMedCrossRefGoogle Scholar
- 123.Rosen LS, et al. Long-term efficacy and safety of zoledronic acid in the treatment of skeletal metastases in patients with nonsmall cell lung carcinoma and other solid tumors. Cancer. 2004;100(12):2613–21.PubMedCrossRefGoogle Scholar
- 124.Clemons MJ, et al. Phase II trial evaluating the palliative benefit of second-line zoledronic acid in breast cancer patients with either a skeletal-related event or progressive bone metastases despite first-line bisphosphonate therapy. J Clin Oncol. 2006;24(30):4895–900.PubMedCrossRefGoogle Scholar
- 125.Akiyama T, Dass CR, Choong PFM. Novel therapeutic strategy for osteosarcoma targeting osteoclast differentiation, bone-resorbing activity, and apoptosis pathway. Mol Cancer Ther. 2008;7(11):3461–9.PubMedCrossRefGoogle Scholar
- 126.Lacey DL, et al. Bench to bedside: elucidation of the OPG–RANK–RANKL pathway and the development of denosumab. Nat Rev Drug Discov. 2012;11(5):401–19.PubMedCrossRefGoogle Scholar
- 127.Gül G, et al. A comprehensive review of denosumab for bone metastasis in patients with solid tumors. Curr Med Res Opin. 2016;32(1):133–45.PubMedCrossRefGoogle Scholar
- 128.Lewiecki EM. RANK ligand inhibition with denosumab for the management of osteoporosis. Expert Opin Biol Ther. 2006;6(10):1041–50.PubMedCrossRefGoogle Scholar
- 129.Vignani F, et al. Skeletal metastases and impact of anticancer and bone-targeted agents in patients with castration-resistant prostate cancer. Cancer Treat Rev. 2016;44:61–73.PubMedCrossRefGoogle Scholar
- 130.Botter SM, Neri D, Fuchs B. Recent advances in osteosarcoma. Curr Opin Pharmacol. 2014;16:15–23.PubMedCrossRefGoogle Scholar
- 131.Body J-J, et al. Systematic review and meta-analysis on the proportion of patients with breast cancer who develop bone metastases. Crit Rev Oncol Hematol. 2017;115:67–80.PubMedCrossRefGoogle Scholar
- 132.Ta HT, et al. A chitosan-dipotassium orthophosphate hydrogel for the delivery of Doxorubicin in the treatment of osteosarcoma. Biomaterials. 2009;30(21):3605–13.PubMedCrossRefGoogle Scholar
- 133.Yang L, Webster TJ. Nanotechnology controlled drug delivery for treating bone diseases. Expert Opin Drug Deliv. 2009;6(8):851–64.PubMedCrossRefGoogle Scholar
- 134.Low SA, Kopecek J. Targeting polymer therapeutics to bone. Adv Drug Deliv Rev. 2012;64(12):1189–204.PubMedPubMedCentralCrossRefGoogle Scholar
- 135.Adjei IM, et al. Inhibition of bone loss with surface-modulated, drug-loaded nanoparticles in an intraosseous model of prostate cancer. J Control Release. 2016;232:83–92.PubMedPubMedCentralCrossRefGoogle Scholar
- 136.Nan M, Yangmei C, Bangcheng Y. Magnesium metal—a potential biomaterial with antibone cancer properties. J Biomed Mater Res A. 2014;102(8):2644–51.PubMedCrossRefGoogle Scholar
- 137.Iafisco M, Margiotta N. Silica xerogels and hydroxyapatite nanocrystals for the local delivery of platinum-bisphosphonate complexes in the treatment of bone tumors: a mini-review. J Inorg Biochem. 2012;117:237–47.PubMedCrossRefGoogle Scholar
- 138.Swami A, et al. Engineered nanomedicine for myeloma and bone microenvironment targeting. Proc Natl Acad Sci U S A. 2014;111(28):10287–92.PubMedPubMedCentralCrossRefGoogle Scholar
- 139.Gu W, et al. Nanotechnology in the targeted drug delivery for bone diseases and bone regeneration. Int J Nanomed. 2013;8:2305–17.CrossRefGoogle Scholar
- 140.Tautzenberger A, Kovtun A, Ignatius A. Nanoparticles and their potential for application in bone. Int J Nanomed. 2012;7:4545–57.CrossRefGoogle Scholar
- 141.Alexis F, et al. Nanoparticle technologies for cancer therapy. Handb Exp Pharmacol. 2010;197:55–86.CrossRefGoogle Scholar
- 142.Liu H, Webster TJ. Bioinspired nanocomposites for orthopedic applications. Singapore: World Scientific; 2007.CrossRefGoogle Scholar
- 143.Vilar G, Tulla-Puche J, Albericio F. Polymers and drug delivery systems. Curr Drug Deliv. 2012;9(4):367–94.PubMedCrossRefGoogle Scholar
- 144.Miller K, et al. Poly(ethylene glycol)–paclitaxel–alendronate self-assembled micelles for the targeted treatment of breast cancer bone metastases. Biomaterials. 2013;34(15):3795–806.PubMedCrossRefGoogle Scholar
- 145.de Miguel L, et al. Poly(γ-benzyl-l-glutamate)-PEG-alendronate multivalent nanoparticles for bone targeting. Int J Pharm. 2014;460(1):73–82.PubMedCrossRefGoogle Scholar
- 146.Segal E, et al. Enhanced anti-tumor activity and safety profile of targeted nano-scaled HPMA copolymer-alendronate-TNP-470 conjugate in the treatment of bone malignances. Biomaterials. 2011;32(19):4450–63.PubMedPubMedCentralCrossRefGoogle Scholar
- 147.Segal E, et al. Targeting angiogenesis-dependent calcified neoplasms using combined polymer therapeutics. PLoS One. 2009;4(4):e5233.PubMedPubMedCentralCrossRefGoogle Scholar
- 148.Nanjwade BK, et al. Dendrimers: emerging polymers for drug-delivery systems. Eur J Pharm Sci. 2009;38(3):185–96.PubMedCrossRefGoogle Scholar
- 149.Clementi C, et al. Dendritic poly(ethylene glycol) bearing paclitaxel and alendronate for targeting bone neoplasms. Mol Pharm. 2011;8(4):1063–72.PubMedCrossRefGoogle Scholar
- 150.Galvin P, et al. Nanoparticle-based drug delivery: case studies for cancer and cardiovascular applications. Cell Mol Life Sci. 2012;69(3):389–404.PubMedCrossRefGoogle Scholar
- 151.Samavedi S, Whittington AR, Goldstein AS. Calcium phosphate ceramics in bone tissue engineering: A review of properties and their influence on cell behavior. Acta Biomater. 2013;9(9):8037–45.PubMedCrossRefGoogle Scholar
- 152.Verron E, et al. Calcium phosphate biomaterials as bone drug delivery systems: a review. Drug Discov Today. 2010;15(13):547–52.PubMedCrossRefGoogle Scholar
- 153.O’Sullivan C, et al. A modified surface on titanium deposited by a blasting process. Coatings. 2011;1(1):53–71.CrossRefGoogle Scholar
- 154.O'Sullivan C, et al. Deposition of substituted apatites with anticolonizing properties onto titanium surfaces using a novel blasting process. J Biomed Mater Res B Appl Biomater. 2010;95B(1):141–9.CrossRefGoogle Scholar
- 155.Lopez-Heredia MA, et al. An injectable calcium phosphate cement for the local delivery of paclitaxel to bone. Biomaterials. 2011;32(23):5411–6.PubMedCrossRefGoogle Scholar
- 156.Itokazu M, et al. Development of porous apatite ceramic for local delivery of chemotherapeutic agents. J Biomed Mater Res A. 1998;39(4):536–8.CrossRefGoogle Scholar
- 157.Palazzo B, et al. Biomimetic hydroxyapatite–drug nanocrystals as potential bone substitutes with antitumor drug delivery properties. Adv Funct Mater. 2007;17(13):2180–8.CrossRefGoogle Scholar
- 158.Abe T, et al. Intraosseous delivery of paclitaxel-loaded hydroxyapatitealginate composite beads delaying paralysis caused by metastatic spine cancer in rats. J Neurosurg Spine. 2008;9(5):502–10.PubMedCrossRefGoogle Scholar
- 159.Polo L, et al. Molecular gates in mesoporous bioactive glasses for the treatment of bone tumors and infection. Acta Biomater. 2017;50:114–26.PubMedCrossRefGoogle Scholar
- 160.He Q, et al. Development of individualized anti-metastasis strategies by engineering nanomedicines. Chem Soc Rev. 2015;44(17):6258–86.PubMedPubMedCentralCrossRefGoogle Scholar
- 161.Rahim M, et al. Glycation-assisted synthesized gold nanoparticles inhibit growth of bone cancer cells. Colloids Surf B Biointerfaces. 2014;117:473–9.PubMedCrossRefGoogle Scholar
- 162.Tran PA, et al. Titanium surfaces with adherent selenium nanoclusters as a novel anticancer orthopedic material. J Biomed Mater Res A. 2010;93(4):1417–28.PubMedGoogle Scholar
- 163.Tran P, Webster TJ. Enhanced osteoblast adhesion on nanostructured selenium compacts for anti-cancer orthopedic applications. Int J Nanomed. 2008;3(3):391–6.Google Scholar
- 164.Tani T, et al. Doxorubicin-loaded calcium phosphate cement in the management of bone and soft tissue tumors. In Vivo. 2006;20(1):55–60.PubMedGoogle Scholar
- 165.Sun W, et al. Bone-targeted mesoporous silica nanocarrier anchored by zoledronate for cancer bone metastasis. Langmuir. 2016;32(36):9237–44.PubMedCrossRefGoogle Scholar
- 166.Sun M, et al. A tissue-engineered therapeutic device inhibits tumor growth in vitro and in vivo. Acta Biomater. 2015;18:21–9.PubMedCrossRefGoogle Scholar
- 167.Iyer AK, et al. Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discov Today. 2006;11(17):812–8.PubMedCrossRefGoogle Scholar
- 168.Pignatello R, Sarpietro MG, Castelli F. Synthesis and biological evaluation of a new polymeric conjugate and nanocarrier with osteotropic properties. J Funct Biomater. 2012;3(1):79–99.PubMedPubMedCentralCrossRefGoogle Scholar
- 169.Grundy M, Coussios C, Carlisle R. Advances in systemic delivery of anti-cancer agents for the treatment of metastatic cancer. Expert Opin Drug Deliv. 2016;13(7):999–1013.PubMedCrossRefGoogle Scholar
- 170.Doolittle E, et al. Spatiotemporal targeting of a dual-ligand nanoparticle to cancer metastasis. ACS Nano. 2015;9(8):8012–21.PubMedPubMedCentralCrossRefGoogle Scholar
- 171.Prabhakar U, et al. Challenges and key considerations of the enhanced permeability and retention (EPR) effect for nanomedicine drug delivery in oncology. Cancer Res. 2013;73(8):2412–7.PubMedPubMedCentralCrossRefGoogle Scholar
- 172.Maeda H. Toward a full understanding of the EPR effect in primary and metastatic tumors as well as issues related to its heterogeneity. Adv Drug Deliv Rev. 2015;91(Supplement C):3–6.PubMedCrossRefGoogle Scholar
- 173.Greco F, Vicent MJ. Combination therapy: opportunities and challenges for polymer-drug conjugates as anticancer nanomedicines. Adv Drug Deliv Rev. 2009;61(13):1203–13.PubMedCrossRefGoogle Scholar
- 174.Pignatello R, et al. A novel biomaterial for osteotropic drug nanocarriers: synthesis and biocompatibility evaluation of a PLGA-ALE conjugate. Nanomedicine (Lond). 2009;4(2):161–75.CrossRefGoogle Scholar
- 175.Mu Q, Wang H, Zhang M. Nanoparticles for imaging and treatment of metastatic breast cancer. Expert Opin Drug Deliv. 2017;14(1):123–36.PubMedCrossRefGoogle Scholar
- 176.Segal E, Satchi-Fainaro R. Design and development of polymer conjugates as anti-angiogenic agents. Adv Drug Deliv Rev. 2009;61(13):1159–76.PubMedCrossRefGoogle Scholar
- 177.Ferreira Ddos S, et al. Development of a bone-targeted pH-sensitive liposomal formulation containing doxorubicin: physicochemical characterization, cytotoxicity, and biodistribution evaluation in a mouse model of bone metastasis. Int J Nanomed. 2016;11:3737–51.CrossRefGoogle Scholar
- 178.Ye WL, et al. Doxorubicin-poly (ethylene glycol)-alendronate self-assembled micelles for targeted therapy of bone metastatic cancer. Sci Rep. 2015;5:14614.PubMedPubMedCentralCrossRefGoogle Scholar
- 179.Wang D, et al. Bone-targeting macromolecular therapeutics. Adv Drug Deliv Rev. 2005;57(7):1049–76.PubMedCrossRefGoogle Scholar
- 180.Thamake SI, et al. Alendronate coated poly-lactic-co-glycolic acid (PLGA) nanoparticles for active targeting of metastatic breast cancer. Biomaterials. 2012;33(29):7164–73.PubMedCrossRefGoogle Scholar
- 181.D'Souza S, et al. Engineering of cell membranes with a bisphosphonate-containing polymer using ATRP synthesis for bone targeting. Biomaterials. 2014;35(35):9447–58.PubMedCrossRefGoogle Scholar
- 182.Cole LE, Vargo-Gogola T, Roeder RK. Targeted delivery to bone and mineral deposits using bisphosphonate ligands. Adv Drug Deliv Rev. 2016;99(Part A):12–27.PubMedCrossRefGoogle Scholar
- 183.Neville-Webbe HL, Gnant M, Coleman RE. Potential anticancer properties of bisphosphonates. Semin Oncol. 2010;37:S53–65.PubMedCrossRefGoogle Scholar
- 184.Nguyen TD, Pitchaimani A, Aryal S. Engineered nanomedicine with alendronic acid corona improves targeting to osteosarcoma. Sci Rep. 2016;6:36707.PubMedPubMedCentralCrossRefGoogle Scholar
- 185.He Y, et al. Bisphosphonate-functionalized coordination polymer nanoparticles for the treatment of bone metastatic breast cancer. J Control Release. 2017;264(Supplement C):76–88.PubMedCrossRefGoogle Scholar
- 186.Yin Q, et al. Pamidronate functionalized nanoconjugates for targeted therapy of focal skeletal malignant osteolysis. Proc Natl Acad Sci U S A. 2016;113(32):E4601–9.PubMedPubMedCentralCrossRefGoogle Scholar
- 187.Murphy MB, et al. Synthesis and in vitro hydroxyapatite binding of peptides conjugated to calcium-binding moieties. Biomacromolecules. 2007;8(7):2237–43.PubMedCrossRefGoogle Scholar
- 188.Jiang T, et al. Poly aspartic acid peptide-linked PLGA based nanoscale particles: potential for bone-targeting drug delivery applications. Int J Pharm. 2014;475(1):547–57.PubMedCrossRefGoogle Scholar
- 189.Fu Y-C, et al. Aspartic acid-based modified PLGA–PEG nanoparticles for bone targeting: in vitro and in vivo evaluation. Acta Biomater. 2014;10(11):4583–96.PubMedCrossRefGoogle Scholar
- 190.Salerno M, et al. Bone-targeted doxorubicin-loaded nanoparticles as a tool for the treatment of skeletal metastases. Curr Cancer Drug Targets. 2010;10(7):649–59.PubMedCrossRefGoogle Scholar
- 191.Ramanlal Chaudhari K, et al. Bone metastasis targeting: a novel approach to reach bone using Zoledronate anchored PLGA nanoparticle as carrier system loaded with Docetaxel. J Control Release. 2012;158(3):470–8.PubMedCrossRefGoogle Scholar
- 192.Sutherland M, et al. RGD-binding integrins in prostate cancer: expression patterns and therapeutic prospects against bone metastasis. Cancers. 2012;4(4):1106–46.PubMedPubMedCentralCrossRefGoogle Scholar
- 193.Desgrosellier JS, Cheresh DA. Integrins in cancer: biological implications and therapeutic opportunities. Nat Rev Cancer. 2010;10(1):9–22.PubMedPubMedCentralCrossRefGoogle Scholar
- 194.Bakewell SJ, et al. Platelet and osteoclast β3 integrins are critical for bone metastasis. Proc Natl Acad Sci. 2003;100(24):14205–10.PubMedPubMedCentralCrossRefGoogle Scholar
- 195.Wang F, et al. RGD peptide conjugated liposomal drug delivery system for enhance therapeutic efficacy in treating bone metastasis from prostate cancer. J Control Release. 2014;196:222–33.PubMedCrossRefGoogle Scholar
- 196.Jubeli E, et al. E-selectin as a target for drug delivery and molecular imaging. J Control Release. 2012;158(2):194–206.PubMedCrossRefGoogle Scholar
- 197.Price TT, et al. Dormant breast cancer micrometastases reside in specific bone marrow niches that regulate their transit to and from bone. Sci Transl Med. 2016;8(340):340ra73.PubMedCrossRefGoogle Scholar
- 198.Price TT, Sipkins DA. E-Selectin and SDF-1 regulate metastatic trafficking of breast cancer cells within the bone. Mol Cell Oncol. 2017;4(4):e1214771.PubMedCrossRefGoogle Scholar
- 199.Morita Y, et al. E-selectin targeting PEGylated-thioaptamer prevents breast cancer metastases. Mol Ther Nucleic Acids. 2016;5(Supplement C):e399.PubMedCrossRefGoogle Scholar
- 200.Federman N, et al. Enhanced growth inhibition of osteosarcoma by cytotoxic polymerized liposomal nanoparticles targeting the alcam cell surface receptor. Sarcoma. 2012;2012:126906.PubMedPubMedCentralCrossRefGoogle Scholar
- 201.Mai J, et al. Bone marrow endothelium-targeted therapeutics for metastatic breast cancer. J Control Release. 2014;187:22–9.PubMedPubMedCentralCrossRefGoogle Scholar
- 202.Mann AP, et al. E-selectin-targeted porous silicon particle for nanoparticle delivery to the bone marrow. Adv Mater. 2011;23(36):H278–82.PubMedCrossRefGoogle Scholar
- 203.Shamay Y, et al. E-selectin binding peptide–polymer–drug conjugates and their selective cytotoxicity against vascular endothelial cells. Biomaterials. 2009;30(32):6460–8.PubMedCrossRefGoogle Scholar
- 204.Jubeli E, et al. Preparation of E-selectin-targeting nanoparticles and preliminary in vitro evaluation. Int J Pharm. 2012;426(1):291–301.PubMedCrossRefGoogle Scholar
- 205.Mo S, et al. Ultrasound-enhanced drug delivery for cancer. Expert Opin Drug Deliv. 2012;9(12):1525–38.PubMedCrossRefGoogle Scholar
- 206.Mitragotri S. Healing sound: the use of ultrasound in drug delivery and other therapeutic applications. Nat Rev Drug Discov. 2005;4(3):255–60.PubMedCrossRefGoogle Scholar
- 207.Boissenot T, et al. Ultrasound-triggered drug delivery for cancer treatment using drug delivery systems: From theoretical considerations to practical applications. J Control Release. 2016;241:144–63.PubMedCrossRefGoogle Scholar
- 208.Napoli A, et al. MR imaging–guided focused ultrasound for treatment of bone metastasis. Radiographics. 2013;33(6):1555–68.PubMedCrossRefGoogle Scholar
- 209.Rodrigues DB, et al. Focused ultrasound for treatment of bone tumours. Int J Hyperth. 2015;31(3):260–71.CrossRefGoogle Scholar
- 210.Liberman B, et al. Pain palliation in patients with bone metastases using MR-guided focused ultrasound surgery: a multicenter study. Ann Surg Oncol. 2009;16(1):140–6.PubMedCrossRefGoogle Scholar
- 211.Huisman M, et al. International consensus on use of focused ultrasound for painful bone metastases: current status and future directions. Int J Hyperth. 2015;31(3):251–9.CrossRefGoogle Scholar
- 212.Staruch R, Chopra R, Hynynen K. Hyperthermia in bone generated with MR imaging-controlled focused ultrasound: control strategies and drug delivery. Radiology. 2012;263(1):117–27.PubMedCrossRefGoogle Scholar
- 213.Ta T, Porter TM. Thermosensitive liposomes for localized delivery and triggered release of chemotherapy. J Control Release. 2013;169(1–2):112–25.PubMedPubMedCentralCrossRefGoogle Scholar
- 214.Sersa G, et al. Electrochemotherapy in treatment of tumours. Eur J Surg Oncol. 2008;34(2):232–40.PubMedCrossRefGoogle Scholar
- 215.Teissié J, et al. Drug delivery by electropulsation: recent developments in oncology. Int J Pharm. 2012;423(1):3–6.PubMedCrossRefGoogle Scholar
- 216.Miklavcic D, et al. Importance of tumour coverage by sufficiently high local electric field for effective electrochemotherapy. Eur J Cancer Suppl. 2006;4(11):45–51.CrossRefGoogle Scholar
- 217.Mir LM. Bases and rationale of the electrochemotherapy. Eur J Cancer Suppl. 2006;4(11):38–44.CrossRefGoogle Scholar
- 218.Miklavcic D, et al. Electrochemotherapy: from the drawing board into medical practice. Biomed Eng Online. 2014;13:29.PubMedPubMedCentralCrossRefGoogle Scholar
- 219.Cadossi R, Ronchetti M, Cadossi M. Locally enhanced chemotherapy by electroporation: clinical experiences and perspective of use of electrochemotherapy. Future Oncol. 2014;10(5):877–90.PubMedCrossRefGoogle Scholar
- 220.Sersa G, et al. Vascular disrupting action of electroporation and electrochemotherapy with bleomycin in murine sarcoma. Br J Cancer. 2008;98(2):388–98.PubMedPubMedCentralCrossRefGoogle Scholar
- 221.Jarm T, et al. Antivascular effects of electrochemotherapy: implications in treatment of bleeding metastases. Expert Rev Anticancer Ther. 2010;10(5):729–46.PubMedCrossRefGoogle Scholar
- 222.Miklavcic D, et al. Electrochemotherapy: technological advancements for efficient electroporation-based treatment of internal tumors. Med Biol Eng Comput. 2012;50(12):1213–25.PubMedPubMedCentralCrossRefGoogle Scholar
- 223.Fini M, et al. Electrochemotherapy is effective in the treatment of rat bone metastases. Clin Exp Metastasis. 2013;30(8):1033–45.PubMedCrossRefGoogle Scholar
- 224.Bianchi G, Campanacci L, Donati D. Electrochemotherapy in bone metastases: results of a phase II study. In: Janco K, Gregor S, Tamara Lah T, Maja C, Metka F, Simona K, Boštjan M, editors. Conference on Experimental and Translational Oncology. Slovenia: Association of Radiology and Oncology; 2013.Google Scholar
- 225.Blanco E, Shen H, Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol. 2015;33(9):941–51.PubMedPubMedCentralCrossRefGoogle Scholar
- 226.Cheng H, et al. Development of nanomaterials for bone-targeted drug delivery. Drug Discov Today. 2017;22(9):1336–50.PubMedCrossRefGoogle Scholar