Nanotechnology for Reducing Orthopedic Implant Infections: Synthesis, Characterization, and Properties

Chapter

Abstract

Each year millions of patients improve their quality of life through surgical procedures that involve implants or implantable medical devices. Medical implants are devices or tissues that are placed inside or on the surface of the body. Many implants are prosthetics, intended to replace or restore the function of traumatized or degenerated tissues and organs. Other implants deliver medication, monitor body functions, or provide support to organs and tissues [1]. Currently, implants are being used in many different parts of the body for various applications such as orthopedics, pacemakers, cardiovascular stents, and catheters [2]. Concurrent with the increased life span in today’s world, the number of age-related diseases has also increased. For example, the global orthopedic implant market was valued at USD 4.3 billion in 2015 and is expected to reach USD 6.2 billion by 2024, according to a new report by Grand View Research, Inc. The constantly rising geriatric population is primarily driving the growth of the market since people aged above 65 years are at a high risk of developing degenerative disc disease, low bone density, and osteoarthritis [3].This chapter will cover some of the more significane advancements that have been made in medical devices to improve their function, in particular, how the next generation of implants are decreasing implant infection.

Keywords

Bone Bacteria Microorganisms Nanotextured Topography Surface roughness Nanoparticles Infection Nanomedicine Nano-textured Morphology Nanometer 

References

  1. 1.
    Khan W, Muntimadugu E, Jaffe M, Domb AJ. Implantable medical devices: focal controlled drug delivery. In: Domb A, Khan W, editors. Advances in delivery science and technology. Boston, MA: Springer; 2014.Google Scholar
  2. 2.
    Regar E, Sianos G, Serruys PW. Stent development and local drug delivery. Br Med Bull. 2001;59:227–48.PubMedCrossRefGoogle Scholar
  3. 3.
    Orthopedic implants market analysis, by application (spinal fusion, long bone, foot & ankle, craniomaxillofacial, joint replacement, dental), and segment forecasts to 2024. Grand View Research; 2016.Google Scholar
  4. 4.
    Wischke C, Lendlein A. Designing multifunctional polymers for cardiovascular implants. Clin Hemorheol Microcirc. 2011;49:347–55.PubMedGoogle Scholar
  5. 5.
    Cardiovascular implants market analysis & trends-device, procedure, disease condition-forecast to 2025. Research and Markets; 2016.Google Scholar
  6. 6.
    Catheters market analysis by product (cardiovascular, urology, intravenous, neurovascular and specialty catheters) and segment forecasts to 2020. Grand View Research; 2014.Google Scholar
  7. 7.
    Biomaterials market for implantable devices (material type-metals, polymers, ceramics and natural; applications-cardiology, orthopedics, dental, ophthalmology and others)-global industry analysis, size, share, growth, trends and forecast 2013-2019. Transparency Market Research; 2014.Google Scholar
  8. 8.
    Grainger DW. All charged up about implanted biomaterials. Nat Biotechnol. 2013;31:507–9.PubMedCrossRefGoogle Scholar
  9. 9.
    Saini M, Singh Y, Arora P, Arora V, Jain K. Implant biomaterials: a comprehensive review. World J Clin Cases. 2015;3:52–7.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Chen Q, Thouas GA. Metallic implant biomaterials. Mater Sci Eng R-Rep. 2015;87:1–57.CrossRefGoogle Scholar
  11. 11.
    Teo AJT, Mishra A, Park I, Kim Y-J, Park W-T, Yoon Y-J. Polymeric biomaterials for medical implants and devices. ACS Biomater Sci Eng. 2016;2:454–72.CrossRefGoogle Scholar
  12. 12.
    Matassi F, Nistri L, Paez DC, Innocenti M. New biomaterials for bone regeneration. Clin Cases Miner Bone Metab. 2011;8:21–4.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Nablo BJ, Prichard HL, Butler RD, Klitzman B, Schoenfisch MH. Inhibition of implant-associated infections via nitric oxide release. Biomaterials. 2005;26:6984–90.PubMedCrossRefGoogle Scholar
  14. 14.
    Mel A, Cousins BG, Seifalian AM. Surface modification of biomaterials: a quest for blood compatibility. Int J Biomater. 2012;2012:707863.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Gotman I. Characteristics of metals used in implants. J Endourol. 1997;11:383–9.PubMedCrossRefGoogle Scholar
  16. 16.
    Godbole N, Yadav S, Ramachandran M, Belemkar S. A review on surface treatment of stainless steel orthopedic implants. Int J Pharm Sci Rev Res. 2016;36:190–4.Google Scholar
  17. 17.
    Holzwarth U, Thomas P, Kachler W, Göske J, Schuh A. Metallurgical differentiation of cobalt-chromium alloys for implants. Orthopade. 2005;34:1046–7. 1049–51PubMedCrossRefGoogle Scholar
  18. 18.
    Oldani C, Dominguez A. Titanium as a biomaterial for implants. In: Fokter S, editor. Recent advances in arthroplasty. London: InTech; 2012.Google Scholar
  19. 19.
    Rack HJ, Qazi JI. Titanium alloys for biomedical applications. Mater Sci Eng C. 2006;26:1269–77.CrossRefGoogle Scholar
  20. 20.
    Hofmann J, Michel R, Holm R, Zilkens J. Corrosion behaviour of stainless steel implants in biological media. Surf Interface Anal. 1981;3:110–7.CrossRefGoogle Scholar
  21. 21.
    Flecka C, Eiflerb D. Corrosion, fatigue and corrosion fatigue behaviour of metal implant materials, especially titanium alloys. Int J Fatigue. 2010;32:929–35.CrossRefGoogle Scholar
  22. 22.
    Nuss KMR, Rechenberg B. Biocompatibility issues with modern implants in bone-a review for clinical orthopedics. Open Orthop J. 2008;2:66–78.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Plecko M, Sievert C, Andermatt D, Frigg R, Kronen P, Klein K, Stübinger S, Nuss K, Bürki A, Ferguson S, Stoeckle U, Rechenberg B. Osseointegration and biocompatibility of different metal implants - a comparative experimental investigation in sheep. BMC Musculoskelet Disord. 2012;13:32.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Rickert D. Polymeric implant materials for the reconstruction of tracheal and pharyngeal mucosal defects in head and neck surgery. GMS Curr Top Otorhinolaryngol Head Neck Surg. 2009;8:Doc06.PubMedGoogle Scholar
  25. 25.
    Maitz MF. Applications of synthetic polymers in clinical medicine. Biosurf Biotribol. 2015;1:161–76.CrossRefGoogle Scholar
  26. 26.
    Kurtz SM. UHMWPE biomaterials handbook: ultra high molecular weight polyethylene in total joint replacement and medical devices. Philadelphia: Elsevier Science; 2009.Google Scholar
  27. 27.
    Li X, Kruger JA, Jor JWY, Wong V, Dietz HP, Nash MP, Nielsen PMF. Characterizing the ex vivo mechanical properties of synthetic polypropylene surgical mesh. J Mech Behavior Biomed Mater. 2014;37:48–55.CrossRefGoogle Scholar
  28. 28.
    Bergmann PA, Becker B, Mauss KL, Liodaki ME, Knobloch J, Mailänder P, Siemers F. Titanium-coated polypropylene mesh (TiLoop Bra) an effective prevention for capsular contracture? Eur J Plastic Surg. 2014;37:339–46.CrossRefGoogle Scholar
  29. 29.
    Terrada C, Julian K, Cassoux N, Prieur AM, Debre M, Quartier P, LeHoang P, Bodaghi B. Cataract surgery with primary intraocular lens implantation in children with uveitis: long-term outcomes. J Cataract Refract Surg. 2011;37:1977–83.PubMedCrossRefGoogle Scholar
  30. 30.
    Rivkin AA. Prospective study of non-surgical primary rhinoplasty using a polymethylmethacrylate injectable implant. Dermatol Surg. 2014;40:305–13.PubMedCrossRefGoogle Scholar
  31. 31.
    Leigh JA. Use of PMMA in expansion dental implants. J Biomed Mater Res. 1975;9:233–42.PubMedCrossRefGoogle Scholar
  32. 32.
    Eyerer P, Jin R. Influence of mixing technique on some properties of PMMA bone cement. J Biomed Mater Res A. 1985;20:1057–94.CrossRefGoogle Scholar
  33. 33.
    Panahi-Bazaz M-R, Zamani M, Abazar B. Hydrophilic acrylic versus PMMA intraocular lens implantation in pediatric cataract surgery. J Ophthalmic Vis Res. 2009;4:201–7.PubMedPubMedCentralGoogle Scholar
  34. 34.
    Kurtz SM, Devine JN. PEEK biomaterials in trauma, orthopedic, and spinal implants. Biomaterials. 2007;28:4845–69.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Garcia-Gonzaleza D, Jayamohanb J, Sotiropoulosc SN, Yoond S-H, Cookd J, Siviourd CR, Ariasa A, Jérusalem A. On the mechanical behaviour of PEEK and HA cranial implants under impact loading. J Mech Behav Biomed Mater. 2017;69:342–54.CrossRefGoogle Scholar
  36. 36.
    Aronoff MS. Market study: biomaterials supply for permanent medical implants. J Biomater Appl. 1995;9:205–61.PubMedCrossRefGoogle Scholar
  37. 37.
    Chugay N, Chugay P, Shiffman M. Body implants: overview. In body sculpting with silicone implants. New York: Springer; 2014. p. 1–12.CrossRefGoogle Scholar
  38. 38.
    Rahimi A, Mashak A. Review on rubbers in medicine: natural, silicone and polyurethane rubbers. Plast Rubber Compos. 2013;42:223–30.CrossRefGoogle Scholar
  39. 39.
    Qin Y, Howlader MM, Deen MJ, Haddara YM, Selvaganapathy PR. Polymer integration for packaging of implantable sensors. Sensors Actuators B Chem. 2014;202:758.CrossRefGoogle Scholar
  40. 40.
    Geeroms B, Laleman W, Laenen A, Heye S, Verslype C, van der Merwe S, Nevens F, Maleux G. Expanded polytetrafluoroethylene-covered stent-grafts for transjugular intrahepatic portosystemic shunts in cirrhotic patients: Long-term patency and clinical outcome results. Eur Radiol. 2017;27(5):1795–803.PubMedCrossRefGoogle Scholar
  41. 41.
    Masood R, Hussain T, Umar M, Azeemullah, Areeb T, Riaz S. In situ development and application of natural coatings on non-absorbable sutures to reduce incision site infections. J Wound Care. 2017;26:115–20.PubMedCrossRefGoogle Scholar
  42. 42.
    Roohpour N, Wasikiewicz JM, Moshaverinia A, Paul D, Grahn MF, Rehman IU, Vadgama P. Polyurethane membranes modified with isopropyl myristate as a potential candidate for encapsulating electronic implants: a study of biocompatibility and water permeability. Polymers. 2010;2:102–19.CrossRefGoogle Scholar
  43. 43.
    de la Peña-Salcedo J, Soto-Miranda M, Lopez-Salguero J. Back to the future: a 15-year experience with polyurethane foam-covered breast implants using the partial-subfascial technique. Aesthetic Plast Surg. 2012;36:331–8.PubMedCrossRefGoogle Scholar
  44. 44.
    Adeosun SO, Lawal GI, Gbenebor OP. Characteristics of biodegradable implants. J Miner Mater Charact Eng. 2014;2:88–106.Google Scholar
  45. 45.
    Gogolewski S. Bioresorbable polymers in trauma and bone surgery. Injury. 2000;31:D28–32.CrossRefGoogle Scholar
  46. 46.
    Santos AR Jr. Bioresorbable polymers for tissue engineering. In: Eberli D, editor. Tissue engineering. London: InTech; 2010.Google Scholar
  47. 47.
    Andreiotelli M, Wenz HJ, Kohal RJ. Are ceramic implants a viable alternative to titanium implants? A systematic literature review. Clin Oral Implants Res. 2009;20(Suppl 4):32–47.PubMedCrossRefGoogle Scholar
  48. 48.
    Al-Sanabani JS, Madfa AA, Al-Sanabani FA. Application of calcium phosphate materials in dentistry. Int J Biomater. 2013;2013:876132.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Özkurt Z, Kazazoğlu E. Zirconia dental implants: a literature review. J Oral Implantol. 2011;37:367–76.PubMedCrossRefGoogle Scholar
  50. 50.
    Maccauro G, Bianchino G, Sangiorgi S, Magnani G, Marotta D, Manicone PF, Raffaelli L, Rossi Iommetti P, Stewart A, Cittadini A, Sgambato A. Development of a new zirconia-toughened alumina: promising mechanical properties and absence of in vitro carcinogenicity. Int J Immunopathol Pharmacol. 2009;22:773–9.PubMedCrossRefGoogle Scholar
  51. 51.
    Anderson JM, Rodriguez A, Chang DT. Foreign body reaction to biomaterials. Semin Immunol. 2008;20:86–100.PubMedCrossRefGoogle Scholar
  52. 52.
    Eiff CV, Jansen B, Kohnen W, Becker K. Infection associated with medical devices. pathogenesis, management, prophylaxis. Drugs. 2005;65:179–214.CrossRefGoogle Scholar
  53. 53.
    Klevens RM, Edwards JR, Richards CL Jr, et al. Estimating health care-associated infections and deaths in U.S. hospitals, 2002. Public Health Rep. 2007;122:160–6.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Morais JM, Papadimitrakopoulos F, Burgess DJ. Biomaterials/tissue interactions: possible solutions to overcome foreign body response. AAPS J. 2010;12:188–96.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Onuki Y, Bhardwaj U, Papadimitrakopoulos F, Burgess DJ. A review of the biocompatibility of implantable devices: current challenges to overcome foreign body response. J Diabetes Sci Technol. 2008;2:1003–15.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Dekel N, Gnainsky Y, Granot I, Racicot K, Mor G. The role of inflammation for a successful implantation. Am J Reprod Immunol. 2014;72:141–7.PubMedCrossRefGoogle Scholar
  57. 57.
    Tang L, Eaton JW. Inflammatory responses to biomaterials. Am J Clin Pathol. 1995;103:466–71.PubMedCrossRefGoogle Scholar
  58. 58.
    Kolaczkowska E, Kubes P. Neutrophil recruitment and function in health and inflammation. Nat Rev Immunol. 2013;13:159–75.PubMedCrossRefGoogle Scholar
  59. 59.
    Ueha S, Shand FHW, Matsushima K. Cellular and molecular mechanisms of chronic inflammation-associated organ fibrosis. Front Immunol. 2012;3:71.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Stroncek JD, Reichert WM. Overview of wound healing in different tissue types; Indwelling neural implants: strategies for contending with the in vivo environment. Boca Raton, FL: CRC Press/Taylor & Francis; 2008.Google Scholar
  61. 61.
    Jansen B, Peters G. Foreign body associated infection. J Antimicrob Chemother. 1993;32:69–75.PubMedCrossRefGoogle Scholar
  62. 62.
    Wolcott RD, Ehrlich GD. Biofilms and chronic infections. JAMA. 2008;299(22):2682–4.PubMedCrossRefGoogle Scholar
  63. 63.
    Hedrick TL, Adams JD, Sawyer RG. Implant-associated infections: an overview. J Long-Term Eff Med Implants. 2006;16:83–99.PubMedCrossRefGoogle Scholar
  64. 64.
    Montanaro L, Speziale P, Campoccia D, Ravaioli S, Cangini I, Pietrocola G, Giannini S, Arciola CR. Scenery of Staphylococcus implant infections in orthopedics. Future Microbiol. 2011;6:1329–49.PubMedCrossRefGoogle Scholar
  65. 65.
    Behzadi P, Behzadi E, Yazdanbod H, Aghapour R, Akbari Cheshmeh M, Salehian OD. A survey on urinary tract infections associated with the three most common uropathogenic bacteria. Maedica (Buchar). 2010;5:111–5.Google Scholar
  66. 66.
    New spin on gram stain bacteria. June 12, 2015. Available from: https://hemtecks.wordpress.com/2015/06/12/new-spin-on-gram-stain-bacteria/.
  67. 67.
    Stewart PS, Costerton JW. Antibiotic resistance of bacteria in biofilms. Lancet. 2001;358(9276):135–8.PubMedCrossRefGoogle Scholar
  68. 68.
    Hidron AI, Edwards JR, Patel J. Antimicrobial-resistant pathogens associated with healthcare-associated infections: annual summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2006-2007. Infect Control Hosp Epidemiol. 2008;29(11):996–1101.PubMedCrossRefGoogle Scholar
  69. 69.
    Ribeiro M, Monteiro FJ, Ferraz MP. Infection of orthopedic implants with emphasis on bacterial adhesion process and techniques used in studying bacterial-material interactions. Biomatter. 2012;2:176–94.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Katsikogianni M, Missirlis YF. Concise review of mechanisms of bacterial adhesion to biomaterials and of techniques used in estimating bacteria-material interactions. Eur Cell Mater. 2004;8:37–57.PubMedCrossRefGoogle Scholar
  71. 71.
    An YH, Friedman RJ. Concise review of mechanisms of bacterial adhesion to biomaterial surfaces. J Biomed Mater Res. 1998;43:338–48.PubMedCrossRefGoogle Scholar
  72. 72.
    Costerton JW. Introduction to biofilm. Int J Antimicrob Agents. 1999;11(3–4):217–21.PubMedCrossRefGoogle Scholar
  73. 73.
    Ryder MA. Catheter related infections: it’s all about biofilm. Adv Pract Nurs eJournal. 2005;5:1–16.Google Scholar
  74. 74.
  75. 75.
    Noimark S, Dunnill CW, Wilson M, Parkin IP. The role of surface in catheter-associated infections. Chem Soc Rev. 2009;38:3435–48.PubMedCrossRefGoogle Scholar
  76. 76.
    Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a common cause of 49 persistent infections. Science. 1999;284:1318–22.PubMedCrossRefGoogle Scholar
  77. 77.
    Williams DF. On the nature of biomaterials. Biomaterials. 2009;30:5897–909.PubMedCrossRefGoogle Scholar
  78. 78.
    Williams D. The relationship between biomaterials and nanotechnology. Biomaterials. 2008;29:1737–8.PubMedCrossRefGoogle Scholar
  79. 79.
    Pathan DS, Doshi SB, Muglikar SD. Nanotechnology in implants: the future is small. Univ Res J Dent. 2015;5:8–13.CrossRefGoogle Scholar
  80. 80.
    Yang L, Liu H, Lin Y. Biomaterial nanotopography-mediated cell responses: experiment and modeling. Int J Smart Nano Mater. 2014;5:227–56.CrossRefGoogle Scholar
  81. 81.
    Slepicka P, Kasalkova NS, Siegel J, Kolska Z, Bacakova L, Svorcik V. Nano-structured and functionalized surfaces for cytocompatibility improvement and bactericidal action. Biotechnol Adv. 2015;33:1120–9.PubMedCrossRefGoogle Scholar
  82. 82.
    Park GE, Webster TJ. A review of nanotechnology for the development of better orthopedic implants. J Biomed Nanotechnol. 2005 Mar;1(1):18–29.CrossRefGoogle Scholar
  83. 83.
    Ong JL, Chan DC. Hydroxyapatite and their use as coatings in dental implants: a review. Crit Rev Biomed Eng. 2000;28:667–707.PubMedCrossRefGoogle Scholar
  84. 84.
    Lee J-K, Choi D-S, Jang I, Choi W-Y. Improved osseointegration of dental titanium implants by TiO2 nanotube arrays with recombinant human bone morphogenetic protein-2: a pilot in vivo study. Int J Nanomedicine. 2015;10:1145–54.PubMedPubMedCentralGoogle Scholar
  85. 85.
    Brennan SA, Ní Fhoghlú C, Devitt BM, O'Mahony FJ, Brabazon D, Walsh A. Silver nanoparticles and their orthopaedic applications. Bone Joint J. 2015;97-B:582–9.PubMedCrossRefGoogle Scholar
  86. 86.
    Liu L, Webster TJ. In situ sensor advancements for osteoporosis prevention, diagnosis, and treatment. Curr Osteoporos Rep. 2016;6:386–95.CrossRefGoogle Scholar
  87. 87.
    Sirivisoot S, Pareta RA, Webster TJ. A conductive nanostructured polymer electrodeposited on titanium as a controllable, local drug delivery platform. J Biomed Mater Res A. 2011;99:586–97.PubMedCrossRefGoogle Scholar
  88. 88.
    Andrade JD, Hlady V. Protein adsorption and materials biocompatibility: a tutorial review and suggested hypotheses; biopolymers/non-exclusion HPLC. Advances in polymer science, vol. 79. Berlin, Heidelberg: Springer; 1986.Google Scholar
  89. 89.
    Raffaini G, Ganazzoli F. Protein adsorption on biomaterial and nanomaterial surfaces: a molecular modeling approach to study non-covalent interactions. J Appl Biomater Biomech. 2010;8:135–45.PubMedGoogle Scholar
  90. 90.
    Song W, Chen H. Protein adsorption on materials surfaces with nano-topography. Chin Sci Bull. 2007;52:3169.CrossRefGoogle Scholar
  91. 91.
    Carpenter J, Khang D, Webster TJ. Nanometer polymer surface features: the influence on surface energy, protein adsorption and endothelial cell adhesion. Nanotechnology. 2008;19:505103.PubMedCrossRefGoogle Scholar
  92. 92.
    Denis FA, Hanarp P, Sutherland DS, Gold J, Mustin C, Rouxhet PG, Dufrêne YF. Protein adsorption on model surfaces with controlled nanotopography and chemistry. Langmuir. 2002;18:819–28.CrossRefGoogle Scholar
  93. 93.
    Scopelliti PE, Borgonovo A, Indrieri M, Giorgetti L, Bongiorno G, Carbone R, Podesta` A, Milani P. The effect of surface nanometre-scale morphology on protein adsorption. PLoS One. 2010;5:e11862.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Cai K, Bossert J, Jandt KD. Does the nanometre scale topography of titanium influence protein adsorption and cell proliferation? Colloids Surf B. 2006;49:136–44.CrossRefGoogle Scholar
  95. 95.
    Rechendorff K, Hovgaard MB, Foss M, et al. Enhancement of protein adsorption induced by surface roughness. Langmuir. 2006;22:10885–8.PubMedCrossRefGoogle Scholar
  96. 96.
    Khang D, Kim SY, Liu-Snyder P, Palmore GTR, Durbin SM, Webster TJ. Enhanced fibronectin adsorption on carbon nanotube/ poly (carbonate) urethane: Independent role of surface nano-roughness and associated surface energy. Biomaterials. 2007;28:4756–68.PubMedCrossRefGoogle Scholar
  97. 97.
    Ercan B, Khang D, Carpenter J, Webster TJ. Using mathematical models to understand the effect of nanoscale roughness on protein adsorption for improving medical devices. Int J Nanomed. 2013;8:75–81.Google Scholar
  98. 98.
    Galli C, Coen MC, Hauert R, Katanaevc VL, Wymannd MP, Gröninga P, Schlapbacha L. Protein adsorption on topographically nanostructured titanium. Surf Sci. 2001;474:L180–4.CrossRefGoogle Scholar
  99. 99.
    Sutherland DS, Broberg M, Nygren H, Kasemo B. Influence of nanoscale surface topography and chemistry on the functional behaviour of an adsorbed model macromolecule. Macromol Biosci. 2001;1:270–3.CrossRefGoogle Scholar
  100. 100.
    Tsimbouri P, Gadegaard N, Burgess K, White K, Reynolds P, Herzyk P, Oreffo R, Dalby MJ. Nanotopographical effects on mesenchymal stem cell morphology and phenotype. J Cell Biochem. 2014;115:380–90.PubMedCrossRefGoogle Scholar
  101. 101.
    Smith LL, Niziolek PJ, Haberstroh KM, Nauman EA, Webster TJ. Decreased fibroblast and increased osteoblast adhesion on nanostructured NaOH-etched PLGA scaffolds. Int J Nanomed. 2007;2:383–8.Google Scholar
  102. 102.
    Rajyalakshmi A, Ercan B, Balasubramanian K, Webster TJ. Reduced adhesion of macrophages on anodized titanium with selected nanotube surface features. Int J Nanomed. 2011;6:1765–71.Google Scholar
  103. 103.
    Ni S, Sun L, Ercan B, Liu L, Ziemer K, Webster TJ. A mechanism for the enhanced attachment and proliferation of fibroblasts on anodized 316L stainless steel with nano-pit arrays. J Biomed Mater Res B. 2014;102:1297–303.CrossRefGoogle Scholar
  104. 104.
    Pegalajar-Jurado A, Easton CD, Crawford RJ, McArthur SL. Fabrication of a platform to isolate the influences of surface nanotopography from chemistry on bacterial attachment and growth. Biointerphases. 2015;10:011002.PubMedCrossRefGoogle Scholar
  105. 105.
    Mitik-Dineva N, Wang J, Mocanasu RC, Stoddart PR, Crawford RJ, Ivanova EP. Impact of nano-topography on bacterial attachment. Biotechnol J. 2008;3:536–44.PubMedCrossRefGoogle Scholar
  106. 106.
    Rizzello L, Sorce B, Sabella S, Vecchio G, Galeone A, Brunetti V, Cingolani R, Pompa PP. Impact of nanoscale topography on genomics and proteomics of adherent bacteria. ACS Nano. 2011;5:1865–76.PubMedCrossRefGoogle Scholar
  107. 107.
    Aguayo S, Strange A, Gadegaard N, Dalbyc MJ, Bozeca L. Influence of biomaterial nanotopography on the adhesive and elastic properties of Staphylococcus aureus cells. RSC Adv. 2016;6:89347–55.CrossRefGoogle Scholar
  108. 108.
    Feng G, Cheng Y, Wang S-Y, Borca-Tasciuc DA, Worobo RW, Moraru CI. Bacterial attachment and biofilm formation on surfaces are reduced by small-diameter nanoscale pores: how small is small enough? NPJ Biofilms Microbiomes. 2015;1:5022.CrossRefGoogle Scholar
  109. 109.
    Pogodin S, Hasan J, Baulin VA, Webb HK, Truong VK. Biophysical model of bacterial cell interactions with nanopatterned cicada wing surfaces. Biophys J. 2013;104:835–40.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Puckett SD, Taylor E, Raimondo T, Webster TJ. The relationship between the nanostructure of titanium surfaces and bacterial attachment. Biomaterials. 2010;31:706–13.PubMedCrossRefGoogle Scholar
  111. 111.
    Epstein AK, Hochbaum AI, Kim P, Aizenberg J. Control of bacterial biofilm growth on surfaces by nanostructural mechanics and geometry. Nanotechnology. 2011;22:494007.PubMedCrossRefGoogle Scholar
  112. 112.
    Gates BD, Xu Q, Stewart M, Ryan D, Willson CG, Whitesides GM. New approaches to nanofabrication: molding, printing, and other techniques. Chem Rev. 2005;105:1171–96.PubMedCrossRefGoogle Scholar
  113. 113.
    Biswas A, Bayer IS, Biris AS, Wang T, Dervishi E, Faupel F. Advances in top–down and bottom-up surface nanofabrication: techniques, applications & future prospects. Adv Colloid Interf Sci. 2012;170:2–27.CrossRefGoogle Scholar
  114. 114.
    Ruchita, Srivastava R, Yadav BC. Nanolithography: processing methods for nanofabrication development. Imp J Interdiscip Res. 2016;2:275–84.Google Scholar
  115. 115.
    Ausschnitt CP, Thomas AC, Wiltshire TJ. Advanced DUV photolithography in a pilot environment. IBM J Res Dev-Opt Lithogr. 1997;41:21–37.CrossRefGoogle Scholar
  116. 116.
    Chen Y. Nanofabrication by electron beam lithography and its applications: a review. Microelectron Eng. 2015;135:57–72.CrossRefGoogle Scholar
  117. 117.
    Fabrizio ED, Fillipo R, Cabrini S, Kumar R, Perennes F, Altissimo M, Businaro L, Cojac D, Vaccari L, Prasciolu M, Candeloro P. X-ray lithography for micro- and nano-fabrication at ELETTRA for interdisciplinary applications. J Phys Condens Matter. 2004;16:S3517–35.CrossRefGoogle Scholar
  118. 118.
    Zhou W, Min G, Zhang J, Liu Y, Wang J, Zhang Y, Sun Y. Nanoimprint lithography: a processing technique for nanofabrication advancement. Nano-Micro Lett. 2011;3:135–40.CrossRefGoogle Scholar
  119. 119.
    Wolfe DB, Love JC, Whitesides GM. Nanostructure replicated by polymer molding. Dekker encyclopedia of nanoscience and nanotechnology, vol. 6. Boca Raton: CRC Press; 2004. p. 2657–66.Google Scholar
  120. 120.
    Hassanin H, Mohammadkhani A, Jiang K. Fabrication of hybrid nanostructure arrays using a PDMS/PDMS replication process. Lab Chip. 2012;12:4160–7.PubMedCrossRefGoogle Scholar
  121. 121.
    Lukaszkowicz K. Review of nanocomposite thin films and coatings deposited by PVD and CVD technology. Nanomaterials. London: InTech; 2011.Google Scholar
  122. 122.
    Liu M, Li X, Karuturi SK, Tokb AIY, Fan HJ. Atomic layer deposition for nanofabrication and interface engineering. Nanoscale. 2012;4:1522–8.PubMedCrossRefGoogle Scholar
  123. 123.
    Ozin GA, Hou K, Lotsch BV, Cademartiri L, Puzzo DP, Scotognella F, Ghadimi A, Thomson J. Nanofabrication by self-assembly. Mater Today. 2009;12:12–23.CrossRefGoogle Scholar
  124. 124.
    Sirivisoot S, Webster TJ. Multiwalled carbon nanotubes enhance electrochemical properties of titanium to determine in situ bone formation. Nanotechnology. 2008;19(29):295101–13.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Chemical EngineeringNortheastern UniversityBostonUSA

Personalised recommendations