Skip to main content

Novel Composites for Human Meniscus Replacement

  • Chapter
  • First Online:
Orthopedic Biomaterials

Abstract

Damage to the meniscus is one of the most widely recognized knee-related ailments and is regularly accompanied with pain, swelling, and trouble with knee function. Numerous patients with this issue will have the capacity to recover normal function through meniscal transplantation. The fundamental advantages of this meniscal transplant include pain relief and preservation of meniscal functionality. However, there are various complications associated with this option. A different approach is to optimize the combination of material properties, geometry, mechanical and tribological characteristics, with a specific end goal to obtain a synthetic meniscal substitute that can mimic the function of the native meniscus. In this chapter, the development of novel composite meniscal embeds will be discussed along with an outline of mechanical, friction and wear tests.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McDermott ID, Amis AA. The consequences of meniscectomy. J Bone Joint Surg Br. 2006;88:1549–56.

    Article  CAS  PubMed  Google Scholar 

  2. Vrancken ACT, Buma P, van Tienen TG. Synthetic meniscus replacement: a review. Int Orthop. 2013;37(2):291–9.

    Article  PubMed  Google Scholar 

  3. Ahmed AM. The load bearing role of the knee mensici. In: Mow VC, Arnoczky SP, Jackson DW, editors. Knee meniscus: basic and clinical foundations. New York: Raven press; 1992. p. 59–73.

    Google Scholar 

  4. Aufderheide AC, Athanasiou KA. Mechanical stimulation toward tissue engineering of the knee meniscus. Ann Biomed Eng. 2004;32:1161–74.

    Article  PubMed  Google Scholar 

  5. Pangborn CA, Athanasiou KA. Knee meniscus, biomechanics of Wiley encyclopaedia of biomechanical engineering. New York: Wiley; 2006.

    Google Scholar 

  6. Fan RSP, Ryu RKN. Meniscal lesions: diagnosis and treatment. Medsc Orthop Sports Med. 2000;4(2).

    Google Scholar 

  7. Vedi V, Williams A, Tennant SJ, et al. Meniscal movement. An in-vivo study using dynamic MRI. J Bone Joint Surg Br. 1999;81(1):37–41.

    Article  CAS  PubMed  Google Scholar 

  8. Stone KR. Meniscus replacement. Clin Sports Med. 1996;15(3):557–71.

    CAS  PubMed  Google Scholar 

  9. Turner S. General principles and perspectives. In: Hodgkinson JM, editor. Mechanical testing of advanced fibre composites. Boca Raton, FL: CRC; 2000. p. 4–35.

    Chapter  Google Scholar 

  10. Shriram D, Kumar GP, Cui F et al. Evaluating the effects of material properties of artificial meniscal implant in the human knee joint using finite element analysis. Sci Rep. 2017;7.

    Google Scholar 

  11. Messner K. Meniscal substitution with a Teflon-periosteal composite graft: a rabbit experiment. Biomaterials. 1994;15(3):223–30.

    Article  CAS  PubMed  Google Scholar 

  12. Messner K, Lohmander LS, Gillquist J. Cartilage mechanics and morphology, synovitis and proteoglycan fragments in rabbit joint fluid after prosthetic meniscal substitution. Biomaterials. 1993;14(3):163–8.

    Article  CAS  PubMed  Google Scholar 

  13. Sommerlath K, Gallino M, Gillquist J. Biomechanical characteristics of different artificial substitutes for rabbit medial meniscus and effect of prosthesis size on knee cartilage. Clin Biomech (Bristol, Avon). 1992;7:97–103.

    Article  CAS  Google Scholar 

  14. Klompmaker J, Jansen HW, Veth RP, et al. Porous implants for knee joint meniscus reconstruction: a preliminary study on the role of pore sizes in ingrowth and differentiation of fibrocartilage. Clin Mater. 1993;14(1):1–11.

    Article  CAS  PubMed  Google Scholar 

  15. Tienen TG, Heijkants RG, de Groot JH, et al. Meniscal replacement in dogs. Tissue regeneration in two different materials with similar properties. J Biomed Mater Res B Appl Biomater. 2006;76(2):389–96.

    Article  CAS  PubMed  Google Scholar 

  16. Holloway JL, Lowman AM, Palmese GR. Mechanical evaluation of poly(vinyl alcohol)-based fibrous composites as biomaterials for meniscal tissue replacement. Acta Biomater. 2010;6(12):4716–24.

    Article  CAS  PubMed  Google Scholar 

  17. Elsner JJ, Portnoy S, Zur G, et al. Design of a free-floating polycarbonate-urethane meniscal implant using finite element modeling and experimental validation. J Biomech Eng. 2010;132(9):095001.

    Article  PubMed  Google Scholar 

  18. Kon E, Filardo G, Tschon M, et al. Tissue engineering for total meniscal substitution: animal study in sheep model-results at 12 months. Tissue Eng Part A. 2012;18(15–16):1573–82.

    Article  CAS  PubMed  Google Scholar 

  19. Kelly BT, Potter HG, Deng XH, et al. Meniscal allograft transplantation in the sheep knee: evaluation of chondroprotective effects. Am J Sports Med. 2006;34(9):1464–77.

    Article  PubMed  Google Scholar 

  20. Linder-Ganz E, Elsner JJ, Danino A, et al. A novel quantitative approach for evaluating contact mechanics of meniscal replacements. J Biomech Eng. 2010;132(2):024501.

    Article  CAS  PubMed  Google Scholar 

  21. Zur G, Linder-Ganz E, Elsner JJ, et al. Chondroprotective effects of a polycarbonate-urethane meniscal implant: histopathological results in a sheep model. Knee Surg Sports Traumatol Arthrosc. 2010;19(2):255–63.

    Article  PubMed  Google Scholar 

  22. Bryce DM. Plastic injection molding: manufacturing process fundamentals. Society of Manufacturing Engineers; 1996. p. 174.

    Google Scholar 

  23. Geary C, Birkinshaw C, Jones E. Characterisation of Bionate polycarbonate polyurethanes for orthopaedic applications. J Mater Sci Mater Med. 2008;19:3355–63.

    Article  CAS  PubMed  Google Scholar 

  24. Hohl MW. The wear behaviour of UHMWPE and ion implanted UHMWPE against different counterfaces. MSc Thesis, University of Cape Town. 1998.

    Google Scholar 

  25. Marcus K. Micromechanisms of polymer sliding wear. PhD Thesis, University of Cape Town. 1992.

    Google Scholar 

  26. Klaas NV, Marcus K, Kellock C. The tribological behaviour of glass filled polytetrafluoroethylene. Tribol Int. 2005;38:824–33.

    Article  CAS  Google Scholar 

  27. Katta JK, Marcolongo M, Lowman A, et al. Friction and wear behaviour of poly(vinyl alcohol)/poly(vinyl pyrrolidone) hydrogels for articular cartilage replacement. J Biomed Mater Res A. 2007;83(2):471–9.

    Article  PubMed  Google Scholar 

  28. Covert RJ, Ott RD, DN K. Friction characteristics of a potential articular cartilage biomaterial. Wear. 2003;255:1064–106.

    Article  CAS  Google Scholar 

  29. Živić F, Babić M, Mitrović A, et al. Interpretation of the friction coefficient during reciprocating sliding of Ti6Al4V alloy against Al2O3. Tribol Ind. 2011;33(1):36–42.

    Google Scholar 

  30. Nechak L, Berger S, Aubry E. A polynomial chaos approach to the robust analysis of the dynamic behaviour of friction systems. Eur J Mech A Solids. 2011;30(4):594–607.

    Article  Google Scholar 

  31. Scholes SC, Unsworth A, Jones E. Polyurethane unicondylar knee prostheses: simulator wear tests and lubrication studies. Phys Med Biol. 2007;52:197–212.

    Article  CAS  PubMed  Google Scholar 

  32. St John K, Gupta M. Evaluation of the wear performance of a polycarbonate-urethane acetabular component in a hip joint simulator and comparison with UHMWPE and cross-linked UHMWPE. J Biomater Appl. 2012;27(1):55–65.

    Article  PubMed  Google Scholar 

  33. Wang J, Gu M. Wear properties and mechanisms of nylon and carbon-fiber-reinforced nylon in dry and wet conditions. J Appl Polym Sci. 2004;93:789–95.

    Article  CAS  Google Scholar 

  34. Alejandro AJ, Athanasiou KA. Design characteristics for the tissue engineering of cartilaginous tissues. Ann Biomed Eng. 2004;32(1):2–17.

    Article  Google Scholar 

  35. De Nardo L, Farè S, Di Matteo V, Cipolla E, Saino E, Visai L, Speziale P, Tanzi MC. New heparinizable modified poly(carbonate urethane) surfaces diminishing bacterial colonization. J Mater Sci Mater Med. 2007;18(11):2109–15.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adijat Omowumi Inyang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Inyang, A.O., Abdalrahman, T., Vaughan, C.L. (2017). Novel Composites for Human Meniscus Replacement. In: Li, B., Webster, T. (eds) Orthopedic Biomaterials. Springer, Cham. https://doi.org/10.1007/978-3-319-73664-8_19

Download citation

Publish with us

Policies and ethics