Bone Grafts and Bone Substitutes for Bone Defect Management

  • Wenhao Wang
  • Kelvin W. K. Yeung


Bone grafts have been predominately applied for the treatments of bone defect, delayed union, non-union and spinal fusion for a period of time despite of the emergency of synthetic graft substitutes. However, the integration of allogeneic bone graft to host bone is unsatisfactory in long-term follow-up. To address this clinical issue, bone morphogenetic proteins (BMPs), parathyroid hormone (PTH) and platelet-rich plasma (PRP) have been considered to incorporate with the allografts for achieving superior bone integration. Although the clinical outcomes of these approaches have exhibited effective bone formation, high application cost and potential adverse effects are concerned. In fact, bioinorganic ions such as magnesium, strontium, and zinc are considered as the alternative of osteogenic factors. Hence, this chapter aims to review the currently available bone grafts, bone substitutes, biological factors and bio-inorganic ions for the treatments of bone defect.


Bone defect Segmental bone defect Orthopedic trauma Bone regeneration Musculoskeletal healing Bone grafting Bone substitute Autologous bone graft Allogenic bone graft Bone ceramic Bone cement Bioactive glass Bone growth factors Bioinorganic ions 3D printing Tissue engineering 


  1. 1.
    Dimitriou R, Jones E, McGonagle D, Giannoudis PV. Bone regeneration: current concepts and future directions. BMC Med. 2011;9:66.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Lewandrowski K-U, Gresser JD, Wise DL, Trantolo DJ. Bioresorbable bone graft substitutes of different osteoconductivities: a histologic evaluation of osteointegration of poly (propylene glycol-co-fumaric acid)-based cement implants in rats. Biomaterials. 2000;21:757–64.PubMedCrossRefGoogle Scholar
  3. 3.
    Campana V, Milano G, Pagano E, Barba M, Cicione C, Salonna G, Lattanzi W, Logroscino G. Bone substitutes in orthopaedic surgery: from basic science to clinical practice. J Mater Sci Mater Med. 2014;25:2445–61.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Bauer TW, Muschler GF. Bone graft materials: an overview of the basic science. Clin Orthop Relat Res. 2000;371:10–27.CrossRefGoogle Scholar
  5. 5.
    LONG WGDE, Einhorn TA, Koval K, McKee M, Smith W, Sanders R, Watson T. Bone grafts and bone graft substitutes in orthopaedic trauma surgery: a critical analysis. J Bone Joint Surg Am. 2007;89:649–58.PubMedCrossRefGoogle Scholar
  6. 6.
    Fillingham Y, Jacobs J. Bone grafts and their substitutes. Bone Joint J. 2016;98:6–9.PubMedCrossRefGoogle Scholar
  7. 7.
    C.f.D. Control. Transmission of HIV through bone transplantation: case report and public health recommendations. MMWR Morb Mortal Wkly Rep. 1988;37:597–9.Google Scholar
  8. 8.
    Stevenson S, Horowitz M. The response to bone allografts. J Bone Joint Surg. 1992;74:939–50.PubMedCrossRefGoogle Scholar
  9. 9.
    Alex Jahangir MA, Nunley RM, Mehta S, Sharan A, TWHP. Fellows. Bone-graft substitutes in orthopaedic surgery. AAOS. 2008;2:1–5.Google Scholar
  10. 10.
    GlobalData, MediPoint: bone grafts and substitutes—global analysis and market forecasts. 2014.Google Scholar
  11. 11.
    Kurien T, Pearson RG, Scammell BE. Bone graft substitutes currently available in orthopaedic practice: the evidence for their use. Bone Joint J. 2013;95-b:583–97.PubMedCrossRefGoogle Scholar
  12. 12.
    FDA, FDA Public Health Notification. Life-threatenning complications associated with recombinant human bone morphologenetic protein in cervicla spine fusion, July 1, 2008.Google Scholar
  13. 13.
    FDA, AMPLIFY™ rhBMP-2 Matrix: Orthopaedic and Rehabilitation Devices Advisory Pannel Presentation., July 27, 2010.Google Scholar
  14. 14.
    Hoffman MD, Xie C, Zhang X, Benoit DS. The effect of mesenchymal stem cells delivered via hydrogel-based tissue engineered periosteum on bone allograft healing. Biomaterials. 2013;34:8887–98.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Long T, Zhu Z, Awad HA, Schwarz EM, Hilton MJ, Dong Y. The effect of mesenchymal stem cell sheets on structural allograft healing of critical sized femoral defects in mice. Biomaterials. 2014;35:2752–9.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Griffin KS, Davis KM, Mckinley TO, Anglen JO, Chu TMG, Boerckel JD, Kacena MA. Evolution of bone grafting: bone grafts and tissue engineering strategies for vascularized bone regeneration. Clin Rev Bone Miner Metab. 2015;13:232–44.CrossRefGoogle Scholar
  17. 17.
    Bhumiratana S, Bernhard JC, Alfi DM, Yeager K, Eton RE, Bova J, Gimble JM, Lopez MJ, Eisig SB, Vunjak-Novakovic G. Tissue-engineered autologous grafts for facial bone reconstruction. Sci Transl Med. 2016;8:343ra383.CrossRefGoogle Scholar
  18. 18.
    Habibovic P, Barralet JE. Bioinorganics and biomaterials: bone repair. Acta Biomater. 2011;7:3013–26.PubMedCrossRefGoogle Scholar
  19. 19.
    Khan SN, Cammisa FP, Sandhu HS, Diwan AD, Girardi FP, Lane JM. The biology of bone grafting. J Am Acad Orthop Surg. 2005;13:77–86.PubMedCrossRefGoogle Scholar
  20. 20.
    Seth Greenwald DPA, Boden SD, Goldberg VM, Yaszemski M, Heim CS. Bone-graft substitutes: facts, fictions and applications, AAOS 75th Annual Meeting, 2008.Google Scholar
  21. 21.
    Albrektsson T, Johansson C. Osteoinduction, osteoconduction and osseointegration. Eur Spine J. 2001;10:S96–101.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Wilson-Hench J. Osteoinduction. Prog Biomed Eng. 1987;4:29.Google Scholar
  23. 23.
    Roberts TT, Rosenbaum AJ. Bone grafts, bone substitutes and orthobiologics: the bridge between basic science and clinical advancements in fracture healing. Organogenesis. 2012;8:114–24.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Giannoudis PV, Faour O, Goff T, Kanakaris N, Dimitriou R. Masquelet technique for the treatment of bone defects: tips-tricks and future directions. Injury. 2011;42:591–8.PubMedCrossRefGoogle Scholar
  25. 25.
    Lieberman JR, Friedlaender GE. Chapter IV. biology of bone grafts, bone regeneration and repair, Springer; 2005. p. 1.Google Scholar
  26. 26.
    Flynn J. Fracture repair and bone grafting, OKU 10: Orthopaedic Knowledge Update. 2011;11–21.Google Scholar
  27. 27.
    Chiarello E, Cadossi M, Tedesco G, Capra P, Calamelli C, Shehu A, Giannini S. Autograft, allograft and bone substitutes in reconstructive orthopedic surgery. Aging Clin Exp Res. 2013;25:101–3.CrossRefGoogle Scholar
  28. 28.
    Kovar FM, Wozasek GE. Bone graft harvesting using the RIA (reaming irrigation aspirator) system—a quantitative assessment. Wien Klin Wochenschr. 2011;123:285–90.PubMedCrossRefGoogle Scholar
  29. 29.
    Dimitriou R, Mataliotakis GI, Angoules AG, Kanakaris NK, Giannoudis PV. Complications following autologous bone graft harvesting from the iliac crest and using the RIA: a systematic review. Injury. 2011;42(Suppl 2):S3–15.PubMedCrossRefGoogle Scholar
  30. 30.
    Belthur MV, Conway JD, Jindal G, Ranade A, Herzenberg JE. Bone graft harvest using a new intramedullary system. Clin Orthop Relat Res. 2008;466:2973–80.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Pape H-C, Tarkin IS. Reamer irrigator aspirator: a new technique for bone graft harvesting from the Intramedullary Canal. Oper Tech Orthop. 2008;18:108–13.CrossRefGoogle Scholar
  32. 32.
    Sagi HC, Young ML, Gerstenfeld L, Einhorn TA, Tornetta P. Qualitative and quantitative differences between bone graft obtained from the medullary canal (with a reamer/irrigator/aspirator) and the iliac crest of the same patient. J Bone Joint Surg Am. 2012;94:2128–35.PubMedCrossRefGoogle Scholar
  33. 33.
    Mauffrey C, Barlow BT, Smith W. Management of segmental bone defects. J Am Acad Orthop Surg. 2015;23:143–53.PubMedGoogle Scholar
  34. 34.
    Bhatt RA, Rozental TD. Bone graft substitutes. Hand Clin. 2012;28:457–68.PubMedCrossRefGoogle Scholar
  35. 35.
    Torres J, Tamimi F, Alkhraisat M, Prados-Frutos JC, Lopez-Cabarcos E, Chapter IV. Bone substitutes, implant dentistry—the most promising discipline of dentistry. InTech; 2011.Google Scholar
  36. 36.
    Burchardt H. Biology of bone transplantation. Orthop Clin North Am. 1987;18:187–96.PubMedGoogle Scholar
  37. 37.
    Heiple KG, Chase SW, Herndon CH. A comparative study of the healing process following different types of bone transplantation. J Bone Joint Surg. 1963;45:1593–616.PubMedCrossRefGoogle Scholar
  38. 38.
    Abbott LC, Schottstaedt ER, Saunders JBDC, Bost FC. The evaluation of cortical and cancellous bone as grafting material. J Bone Joint Surg. 1947;29:381–414.PubMedGoogle Scholar
  39. 39.
    Stevenson S. The immune response to osteochondral allografts in dogs. J Bone Joint Surg. 1987;69:573–82.PubMedCrossRefGoogle Scholar
  40. 40.
    Stevenson S, Li XQ, Martin B. The fate of cancellous and cortical bone after transplantation of fresh and frozen tissue-antigen-matched and mismatched osteochondral allografts in dogs. J Bone Joint Surg. 1991;73:1143–56.PubMedCrossRefGoogle Scholar
  41. 41.
    DoNon I. Studies on the antigenicity of bone. 1984.Google Scholar
  42. 42.
    Voggenreiter G, Ascherl R, Blümel G, Schmit-Neuerburg K. Effects of preservation and sterilization on cortical bone grafts. Arch Orthop Trauma Surg. 1994;113:294–6.PubMedCrossRefGoogle Scholar
  43. 43.
    Urist M. Bone transplants and implants, fundamental and clinical bone. Physiology. 1980.Google Scholar
  44. 44.
    Kotz R, Poitout DG. Biomechanics and biomaterials in orthopedics. Springer Science & Business Media; 2013.Google Scholar
  45. 45.
    Boyce T, Edwards J, Scarborough N. Allograft bone: the influence of processing on safety and performance. Orthop Clin North Am. 1999;30:571–81.PubMedCrossRefGoogle Scholar
  46. 46.
    Finkemeier CG. Bone-grafting and bone-graft substitutes. J Bone Joint Surg. 2002;84:454–64.PubMedCrossRefGoogle Scholar
  47. 47.
    Greenwald AS, Boden SD, Barrack RL, Bostrom MP, Goldberg VM, Yaszemski M, Heim CS. The evolving role of bone-graft substitutes, Proceedings of the American Academy of Orthopaedic Surgeons 77th Annual Meeting, 2010, p. 6.Google Scholar
  48. 48.
    Wu S, Liu X, Yeung KWK, Liu C, Yang X. Biomimetic porous scaffolds for bone tissue engineering. Mater Sci Eng R Rep. 2014;80:1–36.CrossRefGoogle Scholar
  49. 49.
    Zwingenberger S, Nich C, Valladares RD, Yao Z, Stiehler M, Goodman SB. Recommendations and considerations for the use of biologics in orthopedic surgery. BioDrugs. 2012;26:245–56.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Dreesmann H. Ueber Knochenplombirung. Deutsch Med Wochenschr. 1892;19:445–6.CrossRefGoogle Scholar
  51. 51.
    Carson JS, Bostrom MP. Synthetic bone scaffolds and fracture repair. Injury. 2007;38(Suppl 1):S33–7.PubMedCrossRefGoogle Scholar
  52. 52.
    Chi-Chien N, Tsung-Ting T, Tsai-Sheng F, Po-Liang L, Lih-Huei C, Wen-Jer C. A comparison of posterolateral lumbar fusion comparing autograft, autogenous laminectomy bone with bone marrow aspirate, and calcium sulphate with bone marrow aspirate: a prospective randomized study. Spine. 2009;34:2715–9.CrossRefGoogle Scholar
  53. 53.
    Glombitza M, Steinhausen E. Treatment of chronic osteomyelitis of the lower limb with a new injectable, vancomycin-loaded, calcium sulfate/hydroxyapatite composite. Bone Joint J. 2016;98:39.CrossRefGoogle Scholar
  54. 54.
    Jiang N, Qin CH, Ma YF, Wang L, Yu B. Possibility of one-stage surgery to reconstruct bone defects using the modified Masquelet technique with degradable calcium sulfate as a cement spacer: a case report and hypothesis. Biomed Rep. 2016;4:374–8.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Oonishi H, Iwaki Y, Kin N, Kushitani S, Murata N, Wakitani S, Imoto K. Hydroxyapatite in revision of total hip replacements with massive acetabular defects: 4- to 10-year clinical results. Bone Joint J. 1997;79:87–92.CrossRefGoogle Scholar
  56. 56.
    Schwartz C, Bordei R. Biphasic phospho-calcium ceramics used as bone substitutes are efficient in the management of severe acetabular bone loss in revision total hip arthroplasties. Eur J Orthop Surg Traumatol. 2005;15:191–6.CrossRefGoogle Scholar
  57. 57.
    Nich C, Sedel L. Bone substitution in revision hip replacement. Int Orthop. 2006;30:525–31.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Gaasbeek RDA, Toonen HG, Heerwaarden RJ, Van Pieter B. Mechanism of bone incorporation of β -TCP bone substitute in open wedge tibial osteotomy in patients. Biomaterials. 2005;26:6713–9.PubMedCrossRefGoogle Scholar
  59. 59.
    Scheer JH, Adolfsson LE. Tricalcium phosphate bone substitute in corrective osteotomy of the distal radius. Injury. 2009;40:262–7.PubMedCrossRefGoogle Scholar
  60. 60.
    Bucholz RW, Carlton A, Holmes RE. Hydroxyapatite and tricalcium phosphate bone graft substitutes. Orthop Clin North Am. 1987;18:323–34.PubMedGoogle Scholar
  61. 61.
    Eggli PS, Müller W, Schenk RK. Porous hydroxyapatite and tricalcium phosphate cylinders with two different pore size ranges implanted in the cancellous bone of rabbits. A comparative histomorphometric and histologic study of bony ingrowth and implant substitution. Clin Orthop Relat Res. 1988;(232):127–38.Google Scholar
  62. 62.
    Huec JCL, Schaeverbeke T, Clement D, Faber J, Rebeller AL. Influence of porosity on the mechanical resistance of hydroxyapatite ceramics under compressive stress. Biomaterials. 1995;16:113–8.PubMedCrossRefGoogle Scholar
  63. 63.
    Wenisch S, Stahl JP, Horas U, Heiss C, Kilian O, Trinkaus K, Hild A, Schnettler R. In vivo mechanisms of hydroxyapatite ceramic degradation by osteoclasts: fine structural microscopy. J Biomed Mater Res A. 2003;67:713–8.PubMedCrossRefGoogle Scholar
  64. 64.
    Tonino AJ, van der Wal BC, Heyligers IC, Grimm B. Bone remodeling and hydroxyapatite resorption in coated primary hip prostheses. Clin Orthop Relat Res. 2009;467:478–84.PubMedCrossRefGoogle Scholar
  65. 65.
    Kattimani VS, Kondaka S Lingamaneni KP. Hydroxyapatite―past, present, and future in bone regeneration. Bone Tissue Regen Insights. 2016;9.Google Scholar
  66. 66.
    Dubok VA. Bioceramics―yesterday, today, tomorrow, powder metallurgy and metal. Ceramics. 2000;39:381–94.Google Scholar
  67. 67.
    Li H, Zhao Q, Li B, Kang J, Yu Z, Li Y, Song X, Liang C, Wang H. Fabrication and properties of carbon nanotube-reinforced hydroxyapatite composites by a double in situ synthesis process. Carbon NY. 2016;101:159–67.CrossRefGoogle Scholar
  68. 68.
    Mukherjee S, Nandi SK, Kundu B, Chanda A, Sen S, Das PK. Enhanced bone regeneration with carbon nanotube reinforced hydroxyapatite in animal model. J Mech Behav Biomed Mater. 2016;60:243–55.PubMedCrossRefGoogle Scholar
  69. 69.
    Albee FH. Studies in bone growth triple calcium phosphate as a stimulus to osteogenesis. Ann Surg. 1920;71:32–9.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Ogose A, Kondo N, Umezu H, Hotta T, Kawashima H, Tokunaga K, Ito T, Kudo N, Hoshino M, Gu W. Histological assessment in grafts of highly purified beta-tricalcium phosphate (OSferion ®;) in human bones. Biomaterials. 2006;27:1542–9.PubMedCrossRefGoogle Scholar
  71. 71.
    Buchanan FJ. Degradation rate of bioresorbable materials: prediction and evaluation. Elsevier; 2008.Google Scholar
  72. 72.
    Bohner M. Physical and chemical aspects of calcium phosphates used in spinal surgery. Eur Spine J. 2001;10:S114–21.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Chen Y, Wang J, Zhu XD, Tang ZR, Yang X, Tan YF, Fan YJ, Zhang XD. Enhanced effect of beta-tricalcium phosphate phase on neovascularization of porous calcium phosphate ceramics: in vitro and in vivo evidence. Acta Biomater. 2015;11:435–48.PubMedCrossRefGoogle Scholar
  74. 74.
    Malhotra A, Habibovic P. Calcium phosphates and angiogenesis: implications and advances for bone regeneration. Trends Biotechnol. 2016;34:983–92.PubMedCrossRefGoogle Scholar
  75. 75.
    Klenke FM, Liu Y, Yuan H, Hunziker EB, Siebenrock KA, Hofstetter W. Impact of pore size on the vascularization and osseointegration of ceramic bone substitutes in vivo. J Biomed Mater Res A. 2008;85:777–86.PubMedCrossRefGoogle Scholar
  76. 76.
    Bai F, Wang Z, Lu J, Liu J, Chen G, Lv R, Wang J, Lin K, Zhang J, Huang X. The correlation between the internal structure and vascularization of controllable porous bioceramic materials in vivo: a quantitative study. Tissue Eng Part A. 2010;16:3791–803.PubMedCrossRefGoogle Scholar
  77. 77.
    Xiao X, Wang W, Liu D, Zhang H, Gao P, Geng L, Yuan Y, Lu J, Wang Z. The promotion of angiogenesis induced by three-dimensional porous beta-tricalcium phosphate scaffold with different interconnection sizes via activation of PI3K/Akt pathways. Sci Rep. 2015;5:9409.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Barrère F, van Blitterswijk CA, de Groot K. Bone regeneration: molecular and cellular interactions with calcium phosphate ceramics. Int J Nanomed. 2006;1:317.Google Scholar
  79. 79.
    Shanahan CM, Crouthamel MH, Kapustin A, Giachelli CM. Arterial calcification in chronic kidney disease: key roles for calcium and phosphate. Circ Res. 2011;109:697–711.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Di Marco GS, König M, Stock C, Wiesinger A, Hillebrand U, Reiermann S, Reuter S, Amler S, Köhler G, Buck F. High phosphate directly affects endothelial function by downregulating annexin II. Kidney Int. 2013;83:213–22.PubMedCrossRefGoogle Scholar
  81. 81.
    Sandino C, Checa S, Prendergast PJ, Lacroix D. Simulation of angiogenesis and cell differentiation in a CaP scaffold subjected to compressive strains using a lattice modeling approach. Biomaterials. 2010;31:2446–52.PubMedCrossRefGoogle Scholar
  82. 82.
    Jufri NF, Mohamedali A, Avolio A, Baker MS. Mechanical stretch: physiological and pathological implications for human vascular endothelial cells. Vasc Cell. 2015;7:8.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Daculsi G, LeGeros R, Nery E, Lynch K, Kerebel B. Transformation of biphasic calcium phosphate ceramics in vivo: ultrastructural and physicochemical characterization. J Biomed Mater Res. 1989;23:883–94.PubMedCrossRefGoogle Scholar
  84. 84.
    Williams DF. There is no such thing as a biocompatible material. Biomaterials. 2014;35:10009–14.PubMedCrossRefGoogle Scholar
  85. 85.
    Brown W, Chow L. A new calcium-phosphate setting cement. J Dent Res. Am Assoc Dental Research; 1983. p. 672.Google Scholar
  86. 86.
    Brown WE. A new calcium phosphate, water-setting cement. W. E. Brown Cements Research Progress; 1987. pp. 351–79.Google Scholar
  87. 87.
    Alkhraisat MH, Rueda C, Jerez LB, Tamimi Marino F, Torres J, Gbureck U, Lopez Cabarcos E. Effect of silica gel on the cohesion, properties and biological performance of brushite cement. Acta Biomater. 2010;6:257–65.PubMedCrossRefGoogle Scholar
  88. 88.
    Ishikawa K. Calcium phosphate cement. Advances in Calcium Phosphate Biomaterials. Springer; 2014, pp. 199–227.Google Scholar
  89. 89.
    Verron E, Pissonnier ML, Lesoeur J, Schnitzler V, Fellah BH, Pascal-Moussellard H, Pilet P, Gauthier O, Bouler JM. Vertebroplasty using bisphosphonate-loaded calcium phosphate cement in a standardized vertebral body bone defect in an osteoporotic sheep model. Acta Biomater. 2014;10:4887–95.PubMedCrossRefGoogle Scholar
  90. 90.
    Nakano M, Kawaguchi Y, Kimura T, Hirano N. Transpedicular vertebroplasty after intravertebral cavity formation versus conservative treatment for osteoporotic burst fractures. Spine J. 2014;14:39–48.PubMedCrossRefGoogle Scholar
  91. 91.
    Tarsuslugil SM, O’Hara RM, Dunne NJ, Buchanan FJ, Orr JF, Barton DC, Wilcox RK. Development of calcium phosphate cement for the augmentation of traumatically fractured porcine specimens using vertebroplasty. J Biomech. 2013;46:711–5.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Maestretti G, Sutter P, Monnard E, Ciarpaglini R, Wahl P, Hoogewoud H, Gautier E. A prospective study of percutaneous balloon kyphoplasty with calcium phosphate cement in traumatic vertebral fractures: 10-year results. Eur Spine J. 2014;23:1354–60.PubMedCrossRefGoogle Scholar
  93. 93.
    Zaryanov AV, Park DK, Khalil JG, Baker KC, Fischgrund JS. Cement augmentation in vertebral burst fractures. Neurosurg Focus. 2014;37:E5.PubMedCrossRefGoogle Scholar
  94. 94.
    Dorozhkin SV. Nanosized and nanocrystalline calcium orthophosphates. Acta Biomater. 2010;6:715–34.PubMedCrossRefGoogle Scholar
  95. 95.
    Zhou C, Hong Y, Zhang X. Applications of nanostructured calcium phosphate in tissue engineering. Biomater Sci. 2013;1:1012.CrossRefGoogle Scholar
  96. 96.
    Wang P, Zhao L, Liu J, Weir MD, Zhou X, Xu HH. Bone tissue engineering via nanostructured calcium phosphate biomaterials and stem cells. Bone Res. 2014;2:14017.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Alivisatos A. Naturally aligned nanocrystals. Science. 2000;289(80):736–7.PubMedCrossRefGoogle Scholar
  98. 98.
    Tang R, Wang L, Orme CA, Bonstein T, Bush PJ, Nancollas GH. Dissolution at the nanoscale: self‐preservation of biominerals. Angew Chem. 2004;116:2751–5.CrossRefGoogle Scholar
  99. 99.
    Olszta MJ, Cheng X, Jee SS, Kumar R, Kim Y-Y, Kaufman MJ, Douglas EP, Gower LB. Bone structure and formation: a new perspective. Mater Sci Eng R Rep. 2007;58:77–116.CrossRefGoogle Scholar
  100. 100.
    Kim DW, Cho I-S, Kim JY, Jang HL, Han GS, Ryu H-S, Shin H, Jung HS, Kim H, Hong KS. Simple large-scale synthesis of hydroxyapatite nanoparticles: in situ observation of crystallization process. Langmuir. 2009;26:384–8.CrossRefGoogle Scholar
  101. 101.
    Geffers M, Groll J, Gbureck U. Reinforcement strategies for load-bearing calcium phosphate biocements. Materials. 2015;8:2700–17.PubMedCentralCrossRefGoogle Scholar
  102. 102.
    O’Hara RM, Orr JF, Buchanan FJ, Wilcox RK, Barton DC, Dunne NJ. Development of a bovine collagen—apatitic calcium phosphate cement for potential fracture treatment through vertebroplasty. Acta Biomater. 2012;8:4043–52.PubMedCrossRefGoogle Scholar
  103. 103.
    Sugawara A, Asaoka K, Ding S-J. Calcium phosphate-based cements: clinical needs and recent progress. J Mater Chem B. 2013;1:1081–9.CrossRefGoogle Scholar
  104. 104.
    Keating J, Hajducka C, Harper J. Minimal internal fixation and calcium-phosphate cement in the treatment of fractures of the tibial plateau. Bone Joint J. 2003;85:68–73.CrossRefGoogle Scholar
  105. 105.
    Ishiguro S, Kasai Y, Sudo A, Iida K, Uchida A. Percutaneous vertebroplasty for osteoporotic compression fractures using calcium phosphate cement. J Orthop Surg. 2010;18:346–51.CrossRefGoogle Scholar
  106. 106.
    Nakano M, Hirano N, Zukawa M, Suzuki K, Hirose J, Kimura T, Kawaguchi Y. Vertebroplasty using calcium phosphate cement for osteoporotic vertebral fractures: study of outcomes at a minimum follow-up of two years. Asian Spine J. 2012;6:34–42.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Yin X, Li J, Xu J, Huang Z, Rong K, Fan C. Clinical assessment of calcium phosphate cement to treat tibial plateau fractures. J Biomater Appl. 2013;28:199–206.PubMedCrossRefGoogle Scholar
  108. 108.
    Nakamura T, Matsumine A, Asanuma K, Matsubara T, Sudo A. Treatment of bone defect with calcium phosphate cement subsequent to tumor curettage in pediatric patients. Oncol Lett. 2016;11:247–52.PubMedCrossRefGoogle Scholar
  109. 109.
    Benbow J, Bridgwater J. Paste flow and extrusion. 1993.Google Scholar
  110. 110.
    Yaras P, Kalyon D, Yilmazer U. Flow instabilities in capillary flow of concentrated suspensions. Rheol Acta. 1994;33:48–59.CrossRefGoogle Scholar
  111. 111.
    Coussot P, Ancey C. Rheophysical classification of concentrated suspensions and granular pastes. Phys Rev E. 1999;59:4445.CrossRefGoogle Scholar
  112. 112.
    Rough S, Wilson D, Bridgwater J. A model describing liquid phase migration within an extruding microcrystalline cellulose paste. Chem Eng Res Des. 2002;80:701–14.CrossRefGoogle Scholar
  113. 113.
    Bohner M, Baroud G. Injectability of calcium phosphate pastes. Biomaterials. 2005;26:1553–63.PubMedCrossRefGoogle Scholar
  114. 114.
    Patel MJ. Theoretical aspects of paste formulation for extrusion. University of Cambridge; 2008.Google Scholar
  115. 115.
    Habib MAM. Investigation and electromechanical solution for the limited injectability of the hydraulic calcium phosphate paste. Université de Sherbrooke; 2010.Google Scholar
  116. 116.
    O’Neill R, McCarthy HO, Montufar EB, Ginebra MP, Wilson DI, Lennon A, Dunne N. Critical review: injectability of calcium phosphate pastes and cements. Acta Biomater. 2017;50:1–19.PubMedCrossRefGoogle Scholar
  117. 117.
    Hench LL, Splinter RJ, Allen WC, Greenlee TK. Bonding mechanism at interface of ceramic prosthetic materials. J Biomed Mater Res. 1971;5:117–41.CrossRefGoogle Scholar
  118. 118.
    Hench LL, Paschall HA. Direct chemical bond of bioactive glass-ceramic materials to bone and muscle. J Biomed Mater Res. 1973;7:25–42.PubMedCrossRefGoogle Scholar
  119. 119.
    Välimäki V-V, Aro H. Molecular basis for action of bioactive glasses as bone graft substitute. Scand J Surg. 2006;95:95–102.PubMedCrossRefGoogle Scholar
  120. 120.
    Neo M, Nakamura T, Ohtsuki C, Kasai R, Kokubo T, Yamamuro T. Ultrastructural study of the A‐W GC‐bone interface after long‐term implantation in rat and human bone. J Biomed Mater Res. 1994;28:365–72.PubMedCrossRefGoogle Scholar
  121. 121.
    Moimas L, Biasotto M, Lenarda RD, Olivo A, Schmid C. Rabbit pilot study on the resorbability of three-dimensional bioactive glass fibre scaffolds. Acta Biomater. 2006;2:191–9.PubMedCrossRefGoogle Scholar
  122. 122.
    Azenha MR, Lacerda SAD, Marão HF, Filho OP, Filho OM. Evaluation of crystallized biosilicate in the reconstruction of Calvarial defects. J Maxillofac Oral Surgl. 2015;14:1–7.Google Scholar
  123. 123.
    Jones JR. Review of bioactive glass: from Hench to hybrids. Acta Biomater. 2013;9:4457–86.PubMedCrossRefGoogle Scholar
  124. 124.
    Liu W-C, Robu IS, Patel R, Leu MC, Velez M, Chu T-MG. The effects of 3D bioactive glass scaffolds and BMP-2 on bone formation in rat femoral critical size defects and adjacent bones. Biomed Mater. 2014;9:045013.PubMedCrossRefGoogle Scholar
  125. 125.
    Chu TMG, Leu MC, Robu IS, Liu WC, Valez M. Effects of bioactive glass scaffold and BMP-2 in segmental defects. 2013.Google Scholar
  126. 126.
    Watts S, Hill R, O’Donnell M, Law R. Influence of magnesia on the structure and properties of bioactive glasses. J Non-Cryst Solids. 2010;356:517–24.CrossRefGoogle Scholar
  127. 127.
    Lindfors N, Hyvönen P, Nyyssönen M, Kirjavainen M, Kankare J, Gullichsen E, Salo J. Bioactive glass S53P4 as bone graft substitute in treatment of osteomyelitis. Bone. 2010;47:212–8.PubMedCrossRefGoogle Scholar
  128. 128.
    Gaisser DM, Hench LL. Clinical applications of bioactive glass: orthopaedics. An introduction to bioceramics. World Scientific; 2013. pp. 151–8.Google Scholar
  129. 129.
    Lindfors NC, Koski I, Heikkilä JT, Mattila K, Aho AJ. A prospective randomized 14‐year follow‐up study of bioactive glass and autogenous bone as bone graft substitutes in benign bone tumors. J Biomed Mater Res B Appl Biomater. 2010;94:157–64.PubMedGoogle Scholar
  130. 130.
    Hupa L, Karlsson KH, Hupa M, Aro HT. Comparison of bioactive glasses in vitro and in vivo. Glass Technol Part A. 2010;51:89–92.Google Scholar
  131. 131.
    Frantzén J, Rantakokko J, Aro HT, Hein J, Kajander S, Gullichsen E, Kotilainen E, Lindfors NC. Instrumented spondylodesis in degenerative spondylolisthesis with bioactive glass and autologous bone: a prospective 11-year follow-up. Clin Spine Surg. 2011;24:455–61.Google Scholar
  132. 132.
    Pernaa K, Koski I, Mattila K, Gullichsen E, Heikkila J, Aho A, Lindfors N. Bioactive glass S53P4 and autograft bone in treatment of depressed tibial plateau fractures-a prospective randomized 11-year follow-up. J Long-Term Eff Med Implants. 2011;21(2):139–48.PubMedCrossRefGoogle Scholar
  133. 133.
    Li R, Clark A, Hench L. An investigation of bioactive glass powders by sol‐gel processing. J Appl Biomater. 1991;2:231–9.PubMedCrossRefGoogle Scholar
  134. 134.
    Brinker CJ, Scherer GW. Sol-gel science: the physics and chemistry of sol-gel processing. Boston: Academic; 2013.Google Scholar
  135. 135.
    Hench LL. The story of bioglass. J Mater Sci Mater Med. 2006;17:967–78.PubMedCrossRefGoogle Scholar
  136. 136.
    Wheeler D, Eschbach E, Hoellrich R, Montfort M, Chamberland D. Assessment of resorbable bioactive material for grafting of critical‐size cancellous defects. J Orthop Res. 2000;18:140–8.PubMedCrossRefGoogle Scholar
  137. 137.
    Judet J, Judet R. The use of an artificial femoral head for arthroplasty of the hip joint. J Bone Joint Surg Br Vol. 1950;32:166–73.CrossRefGoogle Scholar
  138. 138.
    Webb J, Spencer R. The role of polymethylmethacrylate bone cement in modern orthopaedic surgery. J Bone Joint Surg Br. 2007;89:851–7.PubMedCrossRefGoogle Scholar
  139. 139.
    Hernández L, Gurruchaga M, Goni I. Injectable acrylic bone cements for vertebroplasty based on a radiopaque hydroxyapatite. Formulation and rheological behaviour. J Mater Sci Mater Med. 2009;20:89–97.PubMedCrossRefGoogle Scholar
  140. 140.
    Kühn K-D, Breusch S, Malchau H. Properties of bone cement: what is bone cement? Berlin: Springer Medizin; 2005.Google Scholar
  141. 141.
    Galibert P, Deramond H, Rosat P, Le Gars D. Preliminary note on the treatment of vertebral angioma by percutaneous acrylic vertebroplasty. Neurochirurgie. 1986;33:166–8.Google Scholar
  142. 142.
    McGraw JK, Lippert JA, Minkus KD, Rami PM, Davis TM, Budzik RF. Prospective evaluation of pain relief in 100 patients undergoing percutaneous vertebroplasty: results and follow-up. J Vasc Interv Radiol. 2002;13:883–6.PubMedCrossRefGoogle Scholar
  143. 143.
    Larsson S. Cement augmentation in fracture treatment. Scand J Surg. 2006;95:111–8.PubMedCrossRefGoogle Scholar
  144. 144.
    Ahn DK, Choi DJ, Lee S, Kim KS, Kim TW, Chun TH. Spinal cord injury caused by bone cement after percutaneous Vertebroplasty-one case of long-term follow-up and the result of delayed removal. J Korean Orthop Assoc. 2009;44:386–90.CrossRefGoogle Scholar
  145. 145.
    Kindt‐Larsen T, Smith DB, Jensen JS. Innovations in acrylic bone cement and application equipment. J Appl Biomater. 1995;6:75–83.PubMedCrossRefGoogle Scholar
  146. 146.
    Charnley J. Low friction arthroplasty of the hip: theory and practice. Springer Science & Business Media; 2012.Google Scholar
  147. 147.
    Kenny S, Buggy M. Bone cements and fillers: a review. J Mater Sci Mater Med. 2003;14:923–38.PubMedCrossRefGoogle Scholar
  148. 148.
    Masquelet AC, Begue T. The concept of induced membrane for reconstruction of long bone defects. Orthop Clin North Am. 2010;41:27–37. table of contents.PubMedCrossRefGoogle Scholar
  149. 149.
    Masquelet AC. The evolution of the induced membrane technique: current status and future directions. Tech Orthop. 2016;31:3–8.CrossRefGoogle Scholar
  150. 150.
    Knothe Tate ML, Ritzman TF, Schneider E, Knothe UR. Testing of a new one-stage bone-transport surgical procedure exploiting the periosteum for the repair of long-bone defects. J Bone Joint Surg Am. 2007;89:307–16.PubMedCrossRefGoogle Scholar
  151. 151.
    Christou C, Oliver RA, Yu Y, Walsh WR. The Masquelet technique for membrane induction and the healing of ovine critical sized segmental defects. PLoS One. 2014;9:e114122.PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Gugala Z, Gogolewski S. Healing of critical-size segmental bone defects in the sheep tibiae using bioresorbable polylactide membranes. Injury. 2002;33:71–6.CrossRefGoogle Scholar
  153. 153.
    Bosemark P, Perdikouri C, Pelkonen M, Isaksson H, Tägil M. The masquelet induced membrane technique with BMP and a synthetic scaffold can heal a rat femoral critical size defect. J Orthop Res. 2015;33:488–95.PubMedCrossRefGoogle Scholar
  154. 154.
    Pobloth AM, Schell H, Petersen A, Beierlein K, Kleber C, Schmidt‐Bleek K, Duda GN. Tubular open‐porous β‐TCP‐PLCL scaffolds as guiding structure for segmental bone defect regeneration in a novel sheep model. J Tissue Eng Regen Med. 2017;8.Google Scholar
  155. 155.
    Tarchala M, Harvey EJ, Barralet J. Biomaterial-stabilized soft tissue healing for healing of critical-sized bone defects: the Masquelet technique. Adv Healthc Mater. 2016;5:630–40.PubMedCrossRefGoogle Scholar
  156. 156.
    Ronga M, Ferraro S, Fagetti A, Cherubino M, Valdatta L, Cherubino P. Masquelet technique for the treatment of a severe acute tibial bone loss. Injury. 2014;45(Suppl 6):S111–5.PubMedCrossRefGoogle Scholar
  157. 157.
    Harwood PJ, Ferguson DO. (ii) An update on fracture healing and non-union. Orthop Trauma. 2015;29:228–42.CrossRefGoogle Scholar
  158. 158.
    Daniel Mark F, James Min-Leong W, Conor C, Khan WS. Preclinical and clinical studies on the use of growth factors for bone repair: a systematic review. Curr Stem Cell Res Ther. 2013;8:260–8.CrossRefGoogle Scholar
  159. 159.
    Einhorn TA, Gerstenfeld LC. Fracture healing: mechanisms and interventions. Nat Rev Rheumatol. 2015;11:45–54.PubMedCrossRefGoogle Scholar
  160. 160.
    Lieberman JR, Daluiski A, Einhorn TA. The role of growth factors in the repair of bone. J Bone Joint Surg Am. 2002;84:1032–44.PubMedCrossRefGoogle Scholar
  161. 161.
    Foster TE, Puskas BL, Mandelbaum BR, Gerhardt MB, Rodeo SA. Platelet-rich plasma from basic science to clinical applications. Am J Sports Med. 2009;37:2259–72.PubMedCrossRefGoogle Scholar
  162. 162.
    Govender S, Csimma C, Genant HK, Valentin-Opran A, Amit Y, Arbel R, Aro H, Atar D, Bishay M, Börner MG. Recombinant human bone morphogenetic protein-2 for treatment of open tibial fractures: a prospective, controlled, randomized study of four hundred and fifty patients. J Bone Joint Surg. 2002;84:2123–34.PubMedCrossRefGoogle Scholar
  163. 163.
    Friedlaender GE, Perry CR, Cole JD, Cook SD, Cierny G, Muschler GF, Zych GA, Calhoun JH, Laforte AJ, Yin S. Osteogenic protein-1 (bone morphogenetic protein-7) in the treatment of tibial nonunions. J Bone Joint Surg Am. 2001;83-a(suppl 1):S151–8.Google Scholar
  164. 164.
    Mauffrey C, Seligson D, Lichte P, Pape H, Al-Rayyan M. Bone graft substitutes for articular support and metaphyseal comminution: what are the options? Injury. 2011;42:S35–9.PubMedCrossRefGoogle Scholar
  165. 165.
    Dimar JR, Glassman SD, Burkus KJ, Carreon LY. Clinical outcomes and fusion success at 2 years of single-level instrumented posterolateral fusions with recombinant human bone morphogenetic protein-2/compression resistant matrix versus iliac crest bone graft. Spine. 2006;31:2534–9.PubMedCrossRefGoogle Scholar
  166. 166.
    Jones AL, Bucholz RW, Bosse MJ, Mirza SK, Lyon TR, Webb LX, Pollak AN, Golden JD, Valentin-Opran A. Recombinant human BMP-2 and allograft compared with autogenous bone graft for reconstruction of diaphyseal tibial fractures with cortical defects. J Bone Joint Surg Am. 2006;88:1431–41.PubMedCrossRefGoogle Scholar
  167. 167.
    Kanakaris NK, Calori GM, Verdonk R, Burssens P, De Biase P, Capanna R, Vangosa LB, Cherubino P, Baldo F, Ristiniemi J. Application of BMP-7 to tibial non-unions: a 3-year multicenter experience. Injury. 2008;39:S83–90.PubMedCrossRefGoogle Scholar
  168. 168.
    Vaccaro AR, Lawrence JP, Patel T, Katz LD, Anderson DG, Fischgrund JS, Krop J, Fehlings MG, Wong D. The safety and efficacy of OP-1 (rhBMP-7) as a replacement for iliac crest autograft in posterolateral lumbar arthrodesis: a long-term (> 4 years) pivotal study. Spine. 2008;33:2850–62.PubMedCrossRefGoogle Scholar
  169. 169.
    Kaito T. Biologic enhancement of spinal fusion with bone morphogenetic proteins: current position based on clinical evidence and future perspective. J Spine Surg. 2016;2:357–8.PubMedPubMedCentralCrossRefGoogle Scholar
  170. 170.
    Bong MR, Capla EL, Egol KA, Sorkin AT, Distefano M, Buckle R, Chandler RW, Koval KJ. Osteogenic protein-1 (bone morphogenic protein-7) combined with various adjuncts in the treatment of humeral diaphyseal nonunions. Bull Hosp Jt Dis. 2005;63:20–3.PubMedGoogle Scholar
  171. 171.
    Dimitriou R, Dahabreh Z, Katsoulis E, Matthews S, Branfoot T, Giannoudis P. Application of recombinant BMP-7 on persistent upper and lower limb non-unions. Injury. 2005;36:S51–9.PubMedCrossRefGoogle Scholar
  172. 172.
    Moghaddam A, Elleser C, Biglari B, Wentzensen A, Zimmermann G. Clinical application of BMP 7 in long bone non-unions. Arch Orthop Trauma Surg. 2010;130:71–6.PubMedCrossRefGoogle Scholar
  173. 173.
    Ronga M, Baldo F, Zappalà G, Cherubino P, BIOS Group. Recombinant human bone morphogenetic protein-7 for treatment of long bone non-union: an observational, retrospective, non-randomized study of 105 patients. Injury. 2006;37:S51–6.PubMedCrossRefGoogle Scholar
  174. 174.
    Evans RO, Goldberg JA, Bruce WJ, Walsh W. Reoperated clavicular nonunion treated with osteogenic protein 1 and electrical stimulation. J Shoulder Elb Surg. 2004;13:573–5.CrossRefGoogle Scholar
  175. 175.
    Clark RR, McKinley TO. Bilateral olecranon epiphyseal fracture non-union in a competitive athlete. Iowa Orthop J. 2010;30:179.PubMedPubMedCentralGoogle Scholar
  176. 176.
    Courvoisier A, Sailhan F, Laffenetre O, Obert L, French Study Group of B.M.P.i.O.S. Bone morphogenetic protein and orthopaedic surgery: can we legitimate its off-label use? Int Orthop. 2014;38:2601–5.PubMedCrossRefGoogle Scholar
  177. 177.
    Ekrol I, Hajducka C, Court-Brown C, McQueen MM. A comparison of RhBMP-7 (OP-1) and autogenous graft for metaphyseal defects after osteotomy of the distal radius. Injury. 2008;39:S73–82.PubMedCrossRefGoogle Scholar
  178. 178.
    Bibbo C, Patel DV, Haskell MD. Recombinant bone morphogenetic protein-2 (rhBMP-2) in high-risk ankle and hindfoot fusions. Foot Ankle Int. 2009;30:597–603.PubMedCrossRefGoogle Scholar
  179. 179.
    Schuberth JM, DiDomenico LA, Mendicino RW. The utility and effectiveness of bone morphogenetic protein in foot and ankle surgery. J Foot Ankle Surg. 2009;48:309–14.PubMedCrossRefGoogle Scholar
  180. 180.
    El-Amin SF, Hogan MV, Allen AA, Hinds J, Laurencin CT. The indications and use of bone morphogenetic proteins in foot, ankle, and tibia surgery. Foot Ankle Clin. 2010;15:543–51.PubMedCrossRefGoogle Scholar
  181. 181.
    Fourman MS, Borst EW, Bogner E, Rozbruch SR, Fragomen AT. Recombinant human BMP-2 increases the incidence and rate of healing in complex ankle arthrodesis. Clin Orthop Relat Res. 2014;472:732–9.PubMedCrossRefGoogle Scholar
  182. 182.
    Cowan CM, Aghaloo T, Chou Y-F, Walder B, Zhang X, Soo C, Ting K, Wu B. MicroCT evaluation of three-dimensional mineralization in response to BMP-2 doses in vitro and in critical sized rat calvarial defects. Tissue Eng. 2007;13:501–12.PubMedCrossRefGoogle Scholar
  183. 183.
    Boraiah S, Ohawkes P. Complications of recombinant human BMP-2 for treating complex tibial plateau fractures: a preliminary report. Clin Orthop Relat Res. 2009;467:3257–62.PubMedPubMedCentralCrossRefGoogle Scholar
  184. 184.
    Ritting AW, Weber EW, Lee MC. Exaggerated inflammatory response and bony resorption from BMP-2 use in a pediatric forearm nonunion. J Hand Surg. 2012;37:316–21.CrossRefGoogle Scholar
  185. 185.
    Tannoury C, An HS. Complications with use of bone morphogenetic protein-2 (BMP-2) in spine surgery. Spine J. 2014;14(3):552–9.PubMedCrossRefGoogle Scholar
  186. 186.
    Dimitriou R, Tsiridis E, Giannoudis PV. Current concepts of molecular aspects of bone healing. Injury. 2005;36:1392–404.PubMedCrossRefGoogle Scholar
  187. 187.
    Collin-Osdoby P, Rothe L, Bekker S, Anderson F, Huang Y, Osdoby P. Basic fibroblast growth factor stimulates osteoclast recruitment, development, and bone pit resorption in association with angiogenesis in vivo on the chick chorioallantoic membrane and activates isolated avian osteoclast resorption in vitro. J Bone Miner Res. 2002;17:1859–71.PubMedCrossRefGoogle Scholar
  188. 188.
    Hayek A, Culler FL, Beattie GM, Lopez AD, Cuevas P, Baird A. An in vivo model for study of the angiogenic effects of basic fibroblast growth factor. Biochem Biophys Res Commun. 1987;147:876–80.PubMedCrossRefGoogle Scholar
  189. 189.
    Montesano R, Vassalli JD, Baird A, Guillemin R, Orci L. Basic fibroblast growth factor induces angiogenesis in vitro. Proc Natl Acad Sci. 1986;83:7297–301.PubMedPubMedCentralCrossRefGoogle Scholar
  190. 190.
    Coutu DL, Moira FO, Jacques G. Inhibition of cellular senescence by developmentally regulated FGF receptors in mesenchymal stem cells. Blood. 2011;117:6801–12.PubMedCrossRefGoogle Scholar
  191. 191.
    Pacicca D, Patel N, Lee C, Salisbury K, Lehmann W, Carvalho R, Gerstenfeld L, Einhorn T. Expression of angiogenic factors during distraction osteogenesis. Bone. 2003;33:889–98.PubMedCrossRefGoogle Scholar
  192. 192.
    Haque T, Amako M, Nakada S, Lauzier D, Hamdy R. An immunohistochemical analysis of the temporal and spatial expression of growth factors FGF 1, 2 and 18, IGF 1 and 2, and TGFß1 during distraction osteogenesis. Histol Histopathol. 2007;22(2):119–28.PubMedGoogle Scholar
  193. 193.
    Schmid GJ, Kobayashi C, Sandell LJ, Ornitz DM. Fibroblast growth factor expression during skeletal fracture healing in mice. Dev Dyn. 2009;238:766–74.PubMedPubMedCentralCrossRefGoogle Scholar
  194. 194.
    Su N, Sun Q, Li C, Lu X, Qi H, Chen S, Yang J, Du X, Zhao L, He Q. Gain-of-function mutation in FGFR3 in mice leads to decreased bone mass by affecting both osteoblastogenesis and osteoclastogenesis. Hum Mol Genet. 2010;19(7):1199–210.PubMedPubMedCentralCrossRefGoogle Scholar
  195. 195.
    Du X, Xie Y, Xian CJ, Chen L. Role of FGFs/FGFRs in skeletal development and bone regeneration. J Cell Physiol. 2012;227:3731–43.PubMedCrossRefGoogle Scholar
  196. 196.
    Chen WJ, Jingushi S, Aoyama I, Anzai J, Hirata G, Tamura M, Iwamoto Y. Effects of FGF-2 on metaphyseal fracture repair in rabbit tibiae. J Bone Miner Metab. 2004;22:303–9.PubMedCrossRefGoogle Scholar
  197. 197.
    Nakamura T, Hara Y, Tagawa M, Tamura M, Yuge T, Fukuda H, Nigi H. Recombinant human basic fibroblast growth factor accelerates fracture healing by enhancing callus remodeling in experimental dog tibial fracture. J Bone Miner Res. 1998;13:942–9.PubMedCrossRefGoogle Scholar
  198. 198.
    Kawaguchi H, Nakamura K, Tabata Y, Ikada Y, Aoyama I, Anzai J, Nakamura T, Hiyama Y, Tamura M. Acceleration of fracture healing in nonhuman primates by fibroblast growth factor-2. J Clin Endocrinol Metab. 2001;86:875–80.PubMedCrossRefGoogle Scholar
  199. 199.
    Radomsky ML, Aufdemorte TB, Swain LD, Fox WC, Spiro RC, Poser JW. Novel formulation of fibroblast growth factor-2 in a hyaluronan gel accelerates fracture healing in nonhuman primates. J Orthop Res. 1999;17:607–14.PubMedCrossRefGoogle Scholar
  200. 200.
    Fei Y, Gronowicz G, Hurley MM. Fibroblast growth factor-2, bone homeostasis and fracture repair. Curr Pharm Des. 2013;19:3354–63.PubMedCrossRefGoogle Scholar
  201. 201.
    Kawaguchi H, Oka H, Jingushi S, Izumi T, Fukunaga M, Sato K, Matsushita T, Nakamura K. A local application of recombinant human fibroblast growth factor 2 for tibial shaft fractures: a randomized, placebo-controlled trial. J Bone Miner Res. 2010;25:2735–43.PubMedCrossRefGoogle Scholar
  202. 202.
    Tsiridis E, Upadhyay N, Giannoudis P. Molecular aspects of fracture healing: which are the important molecules? Injury. 2007;38(Suppl 1):S11–25.PubMedCrossRefGoogle Scholar
  203. 203.
    Gerstenfeld LC, Cullinane DM, Barnes GL, Graves DT, Einhorn TA. Fracture healing as a post-natal developmental process: molecular, spatial, and temporal aspects of its regulation. J Cell Biochem. 2003;88:873–84.PubMedCrossRefGoogle Scholar
  204. 204.
    Keramaris NC, Calori GM, Nikolaou VS, Schemitsch EH, Giannoudis PV. Fracture vascularity and bone healing: a systematic review of the role of VEGF. Injury. 2008;39:S45–57.PubMedCrossRefGoogle Scholar
  205. 205.
    Wan C, Gilbert SR, Wang Y, Cao X, Shen X, Ramaswamy G, Jacobsen KA, Alaql ZS, Eberhardt AW, Gerstenfeld LC, Einhorn TA, Deng L, Clemens TL. Activation of the hypoxia-inducible factor-1alpha pathway accelerates bone regeneration. Proc Natl Acad Sci U S A. 2008;105:686–91.PubMedPubMedCentralCrossRefGoogle Scholar
  206. 206.
    Eckardt H, Bundgaard KG, Christensen KS, Lind M, Hansen ES, Hvid I. Effects of locally applied vascular endothelial growth factor (VEGF) and VEGF-inhibitor to the rabbit tibia during distraction osteogenesis. J Orthop Res. 2003;21:335–40.PubMedCrossRefGoogle Scholar
  207. 207.
    Geiger F, Lorenz H, Xu W, Szalay K, Kasten P, Claes L, Augat P, Richter W. VEGF producing bone marrow stromal cells (BMSC) enhance vascularization and resorption of a natural coral bone substitute. Bone. 2007;41:516–22.PubMedCrossRefGoogle Scholar
  208. 208.
    Kaigler D, Wang Z, Horger K, Mooney DJ, Krebsbach PH. VEGF scaffolds enhance angiogenesis and bone regeneration in irradiated osseous defects. J Bone Miner Res. 2006;21:735–44.PubMedCrossRefGoogle Scholar
  209. 209.
    Kent LJ, Darnell K, Zhuo W, Krebsbach PH, Mooney DJ. Coating of VEGF-releasing scaffolds with bioactive glass for angiogenesis and bone regeneration. Biomaterials. 2006;27:3249–55.CrossRefGoogle Scholar
  210. 210.
    Eckardt H, Ding M, Lind M, Hansen ES, Christensen KS, Hvid I. Recombinant human vascular endothelial growth factor enhances bone healing in an experimental nonunion model. J Bone Joint Surg Br. 2005;87:1434–8.PubMedCrossRefGoogle Scholar
  211. 211.
    García JR, Clark AY, García AJ. Integrin-specific hydrogels functionalized with VEGF for vascularization and bone regeneration of critical-size bone defects. J Biomed Mater Res A. 2016;104(4):889–900.PubMedPubMedCentralCrossRefGoogle Scholar
  212. 212.
    Hankenson KD, Dishowitz M, Gray C, Schenker M. Angiogenesis in bone regeneration. Injury. 2011;42:556–61.PubMedPubMedCentralCrossRefGoogle Scholar
  213. 213.
    Babu S, Sandiford NA, Vrahas M. Use of Teriparatide to improve fracture healing: what is the evidence? World J Orthop. 2015;6:457–61.PubMedPubMedCentralCrossRefGoogle Scholar
  214. 214.
    Per A. Annotation: parathyroid hormone and fracture healing. Acta Orthop. 2013;84:4–6.CrossRefGoogle Scholar
  215. 215.
    Jilka RL. Molecular and cellular mechanisms of the anabolic effect of intermittent PTH. Bone. 2007;40:1434–46.PubMedPubMedCentralCrossRefGoogle Scholar
  216. 216.
    Neer RM, Arnaud CD, Zanchetta JR, Prince R, Gaich GA, Reginster JY, Hodsman AB, Eriksen EF, Ish-Shalom S, Genant HK. Effect of parathyroid hormone (1-34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N Engl J Med. 2001;344:1434–41.PubMedCrossRefGoogle Scholar
  217. 217.
    Alkhiary YM, Gerstenfeld LC, Elizabeth K, Michael W, Masahiko S, Mitlak BH, Einhorn TA. Enhancement of experimental fracture-healing by systemic administration of recombinant human parathyroid hormone (PTH 1-34). J Bone Joint Surg Am. 2005;87:731–41.PubMedGoogle Scholar
  218. 218.
    Ralf S, Per A. Parathyroid hormone—a drug for orthopedic surgery? Acta Orthop Scand. 2004;75:654–62.CrossRefGoogle Scholar
  219. 219.
    Wronski T, Yen C-F, Qi H, Dann L. Parathyroid hormone is more effective than estrogen or bisphosphonates for restoration of lost bone mass in ovariectomized rats. Endocrinology. 1993;132:823–31.PubMedCrossRefGoogle Scholar
  220. 220.
    Jerome C, Burr D, Van Bibber T, Hock J, Brommage R. Treatment with human parathyroid hormone (1-34) for 18 months increases cancellous bone volume and improves trabecular architecture in ovariectomized cynomolgus monkeys (Macaca Fascicularis). Bone. 2001;28:150–9.PubMedCrossRefGoogle Scholar
  221. 221.
    Sato M, Westmore M, Ma YL, Schmidt A, Zeng QQ, Glass EV, Vahle J, Brommage R, Jerome CP, Turner CH. Teriparatide [PTH (1–34)] strengthens the proximal femur of ovariectomized nonhuman primates despite increasing porosity. J Bone Miner Res. 2004;19:623–9.PubMedCrossRefGoogle Scholar
  222. 222.
    Ellegaard M, Jorgensen NR, Schwarz P. Parathyroid hormone and bone healing. Calcif Tissue Int. 2010;87:1–13.PubMedCrossRefGoogle Scholar
  223. 223.
    Aspenberg P, Genant HK, Johansson T, Nino AJ, See K, Krohn K, Garcia-Hernandez PA, Recknor CP, Einhorn TA, Dalsky GP, Mitlak BH, Fierlinger A, Lakshmanan MC. Teriparatide for acceleration of fracture repair in humans: a prospective, randomized, double-blind study of 102 postmenopausal women with distal radial fractures. J Bone Miner Res. 2010;25:404–14.PubMedCrossRefGoogle Scholar
  224. 224.
    Aspenberg P, Johansson T. Teriparatide improves early callus formation in distal radial fractures: analysis of a subgroup of patients within a randomized trial. Acta Orthop. 2010;81:234–6.PubMedPubMedCentralCrossRefGoogle Scholar
  225. 225.
    Peichl P, Holzer LA, Maier R, Holzer G. Parathyroid hormone 1-84 accelerates fracture-healing in pubic bones of elderly osteoporotic women. J Bone Joint Surg. 2011;93:1583–7.PubMedCrossRefGoogle Scholar
  226. 226.
    Aspenberg P, Malouf J, Tarantino U, García-Hernández PA, Corradini C, Overgaard S, Stepan JJ, Borris L, Lespessailles E, Frihagen F. Effects of Teriparatide compared with Risedronate on recovery after Pertrochanteric hip fracture. J Bone Joint Surg Am. 2016;98:1868–78.PubMedPubMedCentralCrossRefGoogle Scholar
  227. 227.
    Malouf-Sierra J, Tarantino U, Garcia-Hernandez PA, Corradini C, Overgaard S, Stepan JJ, Borris L, Lespessailles E, Frihagen F, Papavasiliou K, Petto H, Aspenberg P, Caeiro JR, Marin F. Effect of Teriparatide or Risedronate in elderly patients with a recent Pertrochanteric hip fracture: final results of a 78-week randomized clinical trial. J Bone Miner Res. 2017;32(5):1040–51.PubMedCrossRefGoogle Scholar
  228. 228.
    Nauth A, Ristevski B, Li R, Schemitsch EH. Growth factors and bone regeneration: how much bone can we expect? Injury. 2011;42:574–9.PubMedCrossRefGoogle Scholar
  229. 229.
    Marx RE. Platelet-rich plasma (PRP): what is PRP and what is not PRP? Implant Dent. 2001;10:225–8.PubMedCrossRefGoogle Scholar
  230. 230.
    Sampson S, Gerhardt M, Mandelbaum B. Platelet rich plasma injection grafts for musculoskeletal injuries: a review. Curr Rev Musculoskelet Med. 2008;1:165–74.PubMedPubMedCentralCrossRefGoogle Scholar
  231. 231.
    Mandeep D, Sandeep P, Kamal B. Platelet-rich plasma intra-articular knee injections for the treatment of degenerative cartilage lesions and osteoarthritis. Knee Surg Sports Traumatol Arthrosc. 2011;19:528–35.CrossRefGoogle Scholar
  232. 232.
    Mishra A, Pavelko T. Treatment of chronic elbow Tendinosis with buffered platelet-rich plasma. Am J Sports Med. 2006;34:1774–8.PubMedCrossRefGoogle Scholar
  233. 233.
    Gosens T, Peerbooms JC, Van LW, den Oudsten BL. Ongoing positive effect of platelet-rich plasma versus corticosteroid injection in lateral epicondylitis: a double-blind randomized controlled trial with 2-year follow-up. Am J Sports Med. 2011;39:1200–8.PubMedCrossRefGoogle Scholar
  234. 234.
    Calori GM, Tagliabue L, Gala L, D’Imporzano M, Peretti G, Albisetti W. Application of rhBMP-7 and platelet-rich plasma in the treatment of long bone non-unions. Injury. 2008;39:1391–402.PubMedCrossRefGoogle Scholar
  235. 235.
    Gołos J, Waliński T, Piekarczyk P, Kwiatkowski K. Results of the use of platelet rich plasma in the treatment of delayed union of long bones. Ortop Traumatol Rehabil. 2013;16:397–406.CrossRefGoogle Scholar
  236. 236.
    Malhotra R, Kumar V, Garg B, Singh R, Jain V, Coshic P, Chatterjee K. Role of autologous platelet-rich plasma in treatment of long-bone nonunions: a prospective study. Musculoskelet Surg. 2015;99:243–8.PubMedCrossRefGoogle Scholar
  237. 237.
    Oryan A, Alidadi S, Moshiri A. Platelet-rich plasma for bone healing and regeneration. Expert Opin Biol Ther. 2016;16:213–32.PubMedCrossRefGoogle Scholar
  238. 238.
    Roffi A, Di Matteo B, Krishnakumar GS, Kon E, Filardo G. Platelet-rich plasma for the treatment of bone defects: from pre-clinical rational to evidence in the clinical practice. A systematic review. Int Orthop. 2016;41:221–37.PubMedCrossRefGoogle Scholar
  239. 239.
    Ranly DM, Jacquelyn MM, Todd K, Lohmann CH, Timothy M, Cochran DL, Zvi S, Boyan BD. Platelet-derived growth factor inhibits demineralized bone matrix-induced intramuscular cartilage and bone formation. A study of immunocompromised mice. J Bone Joint Surg Am. 2005;87:2052–64.PubMedCrossRefGoogle Scholar
  240. 240.
    Ranly D, Lohmann C, Boyan BD, Schwartz Z. Platelet-rich plasma inhibits demineralized bone matrix-induced bone formation in nude mice. J Bone Joint Surg Am. 2007;89:139–47.PubMedCrossRefGoogle Scholar
  241. 241.
    Alsousou J, Thompson M, Hulley P, Noble A, Willett K. The biology of platelet-rich plasma and its application in trauma and orthopaedic surgery. Bone Joint J. 2009;91:987–96.CrossRefGoogle Scholar
  242. 242.
    Griffin XL, Smith CM, Costa ML. The clinical use of platelet-rich plasma in the promotion of bone healing: a systematic review. Injury. 2009;40:158–62.PubMedCrossRefGoogle Scholar
  243. 243.
    Han B, Woodell-May J, Ponticiello M, Yang Z, Nimni M. The effect of thrombin activation of platelet-rich plasma on demineralized bone matrix osteoinductivity. J Bone Joint Surg. 2009;91:1459–70.PubMedCrossRefGoogle Scholar
  244. 244.
    Beitzel K, Allen D, Apostolakos J, Russell RP, McCarthy MB, Gallo GJ, Cote MP, Mazzocca AD. US definitions, current use, and FDA stance on use of platelet-rich plasma in sports medicine. J Knee Surg. 2015;28:29–34.PubMedCrossRefGoogle Scholar
  245. 245.
    Thompson KH, Chris O. Boon and bane of metal ions in medicine. Science. 2003;300(80):936–9.PubMedCrossRefGoogle Scholar
  246. 246.
    Bose S, Fielding G, Tarafder S, Bandyopadhyay A. Understanding of dopant-induced osteogenesis and angiogenesis in calcium phosphate ceramics. Trends Biotechnol. 2013;31:594–605.PubMedCrossRefGoogle Scholar
  247. 247.
    Madea B. Verkehrsmedizin. Fahreignung, Fahrsicherheit, Unfallrekonstruktion, blood alcohol levels. 2007.Google Scholar
  248. 248.
    Stone R, Ash C. A question of dose. Science. 2003;300(80).Google Scholar
  249. 249.
    Reffitt DM, Ogston N, Jugdaohsingh R, Cheung HFJ, Evans BAJ, Thompson RPH, Powell JJ, Hampson GN. Orthosilicic acid stimulates collagen type 1 synthesis and osteoblastic differentiation in human osteoblast-like cells in vitro. Bone. 2003;32:127–35.PubMedCrossRefGoogle Scholar
  250. 250.
    Gaharwar AK, Mihaila SM, Swami A, Patel A, Sant S, Reis RL, Marques AP, Gomes ME, Khademhosseini A. Bioactive silicate nanoplatelets for osteogenic differentiation of human mesenchymal stem cells. Adv Mater. 2013;25:3329–36.PubMedCrossRefGoogle Scholar
  251. 251.
    Verberckmoes SC, Broe ME, De PCD. Haese, dose-dependent effects of strontium on osteoblast function and mineralization. Kidney Int. 2003;64:534–43.PubMedCrossRefGoogle Scholar
  252. 252.
    Li Y, Li J, Zhu S, Luo E, Feng G, Chen Q, Hu J. Effects of strontium on proliferation and differentiation of rat bone marrow mesenchymal stem cells. Biochem Biophys Res Commun. 2012;418:725–30.PubMedCrossRefGoogle Scholar
  253. 253.
    Wong HM, Yeung KW, Lam KO, Tam V, Chu PK, Luk KD, Cheung K. A biodegradable polymer-based coating to control the performance of magnesium alloy orthopaedic implants. Biomaterials. 2010;31:2084–96.PubMedCrossRefGoogle Scholar
  254. 254.
    Wong HM, Wu S, Chu PK, Cheng SH, Luk KD, Cheung KM, Yeung KW. Low-modulus Mg/PCL hybrid bone substitute for osteoporotic fracture fixation. Biomaterials. 2013;34:7016–32.PubMedCrossRefGoogle Scholar
  255. 255.
    Wang W, Wong H, Leung F, Cheung K, Yeung K. Magnesium ions enriched decellularized bone allografts for bone tissue engineering. Tissue Eng Part A. 2015;S232.Google Scholar
  256. 256.
    Yoshizawa S, Brown A, Barchowsky A, Sfeir C. Role of magnesium ions on osteogenic response in bone marrow stromal cells. Connect Tissue Res. 2014;55(Suppl 1):155–9.PubMedCrossRefGoogle Scholar
  257. 257.
    Yoshizawa S, Brown A, Barchowsky A, Sfeir C. Magnesium ion stimulation of bone marrow stromal cells enhances osteogenic activity, simulating the effect of magnesium alloy degradation. Acta Biomater. 2014;10:2834–42.PubMedCrossRefGoogle Scholar
  258. 258.
    Yamaguchi M, Goto M, Uchiyama S, Nakagawa T. Effect of zinc on gene expression in osteoblastic MC3T3-E1 cells: enhancement of Runx2, OPG, and regucalcin mRNA expressions. Mol Cell Biomech. 2008;312:157–66.CrossRefGoogle Scholar
  259. 259.
    Kwun IS, Cho RA, YELomeda HI, Shin JY, Choi YH, Kang JH. Beattie, zinc deficiency suppresses matrix mineralization and retards osteogenesis transiently with catch-up possibly through Runx 2 modulation. Bone. 2010;46:732–41.PubMedCrossRefGoogle Scholar
  260. 260.
    Wang W, Li TL, Wong HM, Chu PK, Kao RY, Wu S, Leung FK, Wong TM, To MK, Cheung KM, Yeung KW. Development of novel implants with self-antibacterial performance through in-situ growth of 1D ZnO nanowire. Colloids Surf B Biointerfaces. 2016;141:623–33.PubMedCrossRefGoogle Scholar
  261. 261.
    Popp JR, Love BJ, Goldstein AS. Effect of soluble zinc on differentiation of osteoprogenitor cells. J Biomed Mater Res A. 2007;81A:766–9.CrossRefGoogle Scholar
  262. 262.
    Wu C, Zhou Y, Xu M, Han P, Chen L, Chang J, Xiao Y. Copper-containing mesoporous bioactive glass scaffolds with multifunctional properties of angiogenesis capacity, osteostimulation and antibacterial activity. Biomaterials. 2013;34:422–33.PubMedCrossRefGoogle Scholar
  263. 263.
    Ren L, Wong HM, Yan CH, Yeung KW, Yang K. Osteogenic ability of Cu-bearing stainless steel. J Biomed Mater Res B Appl Biomater. 2015;103:1433–44.PubMedCrossRefGoogle Scholar
  264. 264.
    Chen Y, Whetstone HC, Lin AC, Nadesan P, Wei Q, Poon R, Alman BA. Beta-catenin signaling plays a disparate role in different phases of fracture repair: implications for therapy to improve bone healing. PLoS Med. 2007;4:1216–29.CrossRefGoogle Scholar
  265. 265.
    Wei F, Crawford R, Yin X. Enhancing in vivo vascularized bone formation by cobalt chloride-treated bone marrow stromal cells in a tissue engineered periosteum model. Biomaterials. 2010;31:3580–9.CrossRefGoogle Scholar
  266. 266.
    Wu C, Zhou Y, Fan W, Han P, Chang J, Yuen J, Zhang M, Xiao Y. Hypoxia-mimicking mesoporous bioactive glass scaffolds with controllable cobalt ion release for bone tissue engineering. Biomaterials. 2012;33:2076–85.PubMedCrossRefGoogle Scholar
  267. 267.
    Quinlan E, Partap S, Azevedo MM, Jell G, Stevens MM, O’Brien FJ. Hypoxia-mimicking bioactive glass/collagen glycosaminoglycan composite scaffolds to enhance angiogenesis and bone repair. Biomaterials. 2015;52:358–66.PubMedCrossRefGoogle Scholar
  268. 268.
    Carlisle EM. Biochemical and morphological changes associated with long bone abnormalities in silicon deficiency. J Nutr. 1980;110:1046–56.PubMedCrossRefGoogle Scholar
  269. 269.
    Mertz W. Trace elements in human and animal nutrition. New York: Academic; 1986.Google Scholar
  270. 270.
    Nielsen FH. Micronutrients in parenteral nutrition: boron, silicon, and fluoride. Gastroenterology. 2009;137:S55–60.PubMedCrossRefGoogle Scholar
  271. 271.
    Carlisle EM. Silicon: a possible factor in bone calcification. Science. 1970;167(80):279–80.PubMedCrossRefGoogle Scholar
  272. 272.
    Bohner M. Silicon-substituted calcium phosphates—a critical view. Biomaterials. 2009;30:6403–6.PubMedCrossRefGoogle Scholar
  273. 273.
    Keeting PE, Oursler MJ, Wiegand KE, Bonde SK, Spelsberg TC, Riggs BL. Zeolite A increases proliferation, differentiation and TGF-beta production in normal adult human osteoblast-like cells in vitro. J Bone Miner Res. 1992;7:1281–9.PubMedCrossRefGoogle Scholar
  274. 274.
    Pietak AM, Reid JW, Stott MJ, Sayer M. Silicon substitution in the calcium phosphate bioceramics. Biomaterials. 2007;28:4023–32.PubMedCrossRefGoogle Scholar
  275. 275.
    Botelho CM, Brooks RA, Spence G, Mcfarlane I, Lopes MA, Best SM, Santos JD, Rushton N, Bonfield W. Differentiation of mononuclear precursors into osteoclasts on the surface of Si-substituted hydroxyapatite. J Biomed Mater Res A. 2006;78:709–20.PubMedCrossRefGoogle Scholar
  276. 276.
    Guth K, Buckland T, Hing KA. Silicon dissolution from microporous silicon substituted hydroxyapatite and its effect on osteoblast behaviour. Key Eng Mater. 2006;309-311:117–20.CrossRefGoogle Scholar
  277. 277.
    Porter AE, Best SM, William B. Ultrastructural comparison of hydroxyapatite and silicon-substituted hydroxyapatite for biomedical applications. J Biomed Mater Res A. 2004;68A:133–41.CrossRefGoogle Scholar
  278. 278.
    Porter AE, Patel N, Skepper JN, Best SM, Bonfield W. Effect of sintered silicate-substituted hydroxyapatite on remodelling processes at the bone-implant interface. Biomaterials. 2004;25:3303–14.PubMedCrossRefGoogle Scholar
  279. 279.
    Kawai T, Ogata S, Bonfield W, Best S, Ohtsuki C, Santos JD, Lopes MA, Brooks RA, Rushton N, Botelho CM. In vitro analysis of protein adhesion to phase pure hydroxyapatite and silicon substituted hydroxyapatite. Key Eng Mater. 2005;284-286:461–4.CrossRefGoogle Scholar
  280. 280.
    Curtis A, Wilkinson C. Topographical control of cells. Biomaterials. 1997;18:1573–83.PubMedCrossRefGoogle Scholar
  281. 281.
    Skoryna SC. Metabolic aspects of the pharmacologic use of trace elements in human subjects with specific reference to stable strontium. Trace Subst Environ Health. 1984;18:23.Google Scholar
  282. 282.
    Jung C, Jung J. The nature of the injury to the calcifying mechanism in rickets due to strontium. Biochem J. 1935;29:2640–5.CrossRefGoogle Scholar
  283. 283.
    Coulombe J, Faure H, Robin B, Ruat M. In vitro effects of strontium ranelate on the extracellular calcium-sensing receptor. Biochem Biophys Res Commun. 2004;323:1184–90.PubMedCrossRefGoogle Scholar
  284. 284.
    Brown EM. Is the calcium receptor a molecular target for the actions of strontium on bone? Osteoporosis Int. 2003;14(suppl 3):S25–34.CrossRefGoogle Scholar
  285. 285.
    Kostenuik PJ, Shalhoub V. Osteoprotegerin: a physiological and pharmacological inhibitor of bone resorption. Curr Pharm Des. 2001;7:613–35.PubMedCrossRefGoogle Scholar
  286. 286.
    Peng S, Liu XS, Zhou G, Li Z, Luk KD, Guo XE, Lu WW. Osteoprotegerin deficiency attenuates strontium-mediated inhibition of osteoclastogenesis and bone resorption. J Bone Miner Res. 2011;26:1272–82.PubMedCrossRefGoogle Scholar
  287. 287.
    Steeve Kwan T, Jean-Pierre P, Francois M, Judith C, Johanne MP. Strontium ranelate inhibits key factors affecting bone remodeling in human osteoarthritic subchondral bone osteoblasts. Bone. 2011;49:559–67.CrossRefGoogle Scholar
  288. 288.
    Baron R, Tsouderos Y. In vitro effects of S12911-2 on osteoclast function and bone marrow macrophage differentiation. Eur J Pharmacol. 2002;450:11–7.PubMedCrossRefGoogle Scholar
  289. 289.
    Hurtel-Lemaire AS, Mentaverri R, Caudrillier A, Cournarie F, Wattel A, Kamel S, Terwilliger EF, Brown EM, Brazier M. The calcium-sensing receptor is involved in strontium Ranelate-induced osteoclast apoptosis. J Biol Chem. 2009;284:575–84.PubMedCrossRefGoogle Scholar
  290. 290.
    Meunier PJ, Christian R, Ego S, Sergio O, Badurski JE, Spector TD, Jorge C, Adam B, Ernst-Martin L, Stig PN. The effects of strontium ranelate on the risk of vertebral fracture in women with postmenopausal osteoporosis. N Engl J Med. 2004;350:459–68.PubMedCrossRefGoogle Scholar
  291. 291.
    Boivin G, Deloffre P, Perrat B, Panczer G, Boudeulle M, Mauras Y, Allain P, Tsouderos Y, Meunier PJ. Strontium distribution and interactions with bone mineral in monkey iliac bone after strontium salt (S 12911) administration. J Bone Miner Res. 1996;11:1302–11.PubMedCrossRefGoogle Scholar
  292. 292.
    Bigi A, Foresti E, Gandolfi M, Gazzano M, Roveri N. Isomorphous substitutions in β-tricalcium phosphate: the different effects of zinc and strontium. J Inorg Biochem. 1997;66:259–65.CrossRefGoogle Scholar
  293. 293.
    Saint-Jean SJ, Camiré CL, Nevsten P, Hansen S, Ginebra MP. Study of the reactivity and in vitro bioactivity of Sr-substituted alpha-TCP cements. J Mater Sci Mater Med. 2005;16:993–1001.PubMedCrossRefGoogle Scholar
  294. 294.
    Verberckmoes SC, Behets GJ, Oste L, Bervoets AR, Lamberts LV, Drakopoulos M, Somogyi A, Cool P, Dorriné W, Broe MED. Effects of strontium on the physicochemical characteristics of hydroxyapatite. Calcif Tissue Int. 2004;75:405–15.PubMedCrossRefGoogle Scholar
  295. 295.
    Wang X, Ye J. Variation of crystal structure of hydroxyapatite in calcium phosphate cement by the substitution of strontium ions. J Mater Sci Mater Med. 2008;19:1183–6.PubMedCrossRefGoogle Scholar
  296. 296.
    Christoffersen J, Christoffersen MR, Kolthoff N, Bärenholdt O. Effects of strontium ions on growth and dissolution of hydroxyapatite and on bone mineral detection. Bone. 1997;20:47–54.PubMedCrossRefGoogle Scholar
  297. 297.
    Xue W, Moore JL, Hosick HL, Bose S, Bandyopadhyay A, Lu WW, Cheung KMC, Luk KDK. Osteoprecursor cell response to strontium-containing hydroxyapatite ceramics. J Biomed Mater Res A. 2006;79:804–14.PubMedCrossRefGoogle Scholar
  298. 298.
    Capuccini C, Torricelli P, Sima F, Boanini E, Ristoscu C, Bracci B, Socol G, Fini M, Mihailescu IN, Bigi A. Strontium-substituted hydroxyapatite coatings synthesized by pulsed-laser deposition: in vitro osteoblast and osteoclast response. Acta Biomater. 2008;4:1885–93.PubMedCrossRefGoogle Scholar
  299. 299.
    Wong CT, Lu WW, Chan WK, Cheung KMC, Luk KDK, Lu DS, Rabie ABM, Deng LF, Leong JCY. In vivo cancellous bone remodeling on a strontium-containing hydroxyapatite (sr-HA) bioactive cement. J Biomed Mater Res A. 2004;68A:513–21.CrossRefGoogle Scholar
  300. 300.
    Gorustovich AA, Steimetz T, Cabrini RL, López JMP. Osteoconductivity of strontium-doped bioactive glass particles: a histomorphometric study in rats. J Biomed Mater Res A. 2009;92:232–7.Google Scholar
  301. 301.
    Luo X, Barbieri D, Zhang Y, Yan Y, Bruijn JD, Yuan H. Strontium-containing apatite/poly lactide composites favoring osteogenic differentiation and in vivo bone formation. ACS Biomater Sci Eng. 2015;1:85–93.CrossRefGoogle Scholar
  302. 302.
    Saidak Z, Marie PJ. Strontium signaling: molecular mechanisms and therapeutic implications in osteoporosis. Pharmacol Ther. 2012;136:216–26.PubMedCrossRefGoogle Scholar
  303. 303.
    Strontium ranelate (Protos) and risk of adverse events. A.G. Department of Health; 2014.Google Scholar
  304. 304.
    Bolland MJ, Grey A. A comparison of adverse event and fracture efficacy data for strontium ranelate in regulatory documents and the publication record. BMJ Open. 2014;4:1–8.CrossRefGoogle Scholar
  305. 305.
    Wolf FI, Cittadini A. Chemistry and biochemistry of magnesium. Mol Asp Med. 2003;24:3–9.CrossRefGoogle Scholar
  306. 306.
    Wallach S. Magnesium:its biologic significance. Med Phys. 1982;9:588–9.CrossRefGoogle Scholar
  307. 307.
    Vormann J. Magnesium: nutrition and metabolism. Mol Asp Med. 2003;24:27–37.CrossRefGoogle Scholar
  308. 308.
    Neuman WF, Neuman MW. The nature of the mineral phase of bone. Chem Rev. 1953;53:1–45.CrossRefGoogle Scholar
  309. 309.
    Neuman WF, Mulryan BJ. Synthetic hydroxyapatite crystals. IV Magnesium incorporation. Calcif Tissue Res. 1971;7:133–8.PubMedCrossRefGoogle Scholar
  310. 310.
    Glimcher M. The nature of the mineral phase in bone: biological and clinical implications, In: Aviloi L, Krane SM (Eds.) Metabolic bone disease & clinically related disorders. Academic; 1998. p. 23–50.Google Scholar
  311. 311.
    Saris N-EL, Mervaala E, Karppanen H, Khawaja JA, Lewenstam A. Magnesium: an update on physiological, clinical and analytical aspects. Clin Chim Acta. 2000;294:1–26.PubMedCrossRefGoogle Scholar
  312. 312.
    Classen HG, Baier S, Schimatschek HF, Classen CU. Clinically relevant interactions between hormones and magnesium metabolism—a review. Magnesium B. 1995;17.Google Scholar
  313. 313.
    Del Barrio RA, Giro G, Belluci MM, Pereira RM, Orrico SR. Effect of severe dietary magnesium deficiency on systemic bone density and removal torque of osseointegrated implants. Int J Oral Maxillofac Surg. 2010;25:1125–30.Google Scholar
  314. 314.
    Bernick S, Hungerford GF. Effect of dietary magnesium deficiency on bones and teeth of rats. J Dent Res. 1965;44:1317–24.CrossRefGoogle Scholar
  315. 315.
    Stendig-Lindberg G, Koeller W, Bauer A, Rob PM. Experimentally induced prolonged magnesium deficiency causes osteoporosis in the rat. Cell Mol Biol Lett. 2004;15:97–107.Google Scholar
  316. 316.
    Velazguez J, Jimenez A, Chomon B, Villa T. Magnesium supplementation and bone turnover. Nutr Rev. 1999;57:227.Google Scholar
  317. 317.
    Otten JJ, Hellwig JP, Meyers LD. Dietary reference intakes: the essential guide to nutrient requirements. National Academies Press; 2006.Google Scholar
  318. 318.
    Zhou H, Burger C, Sics I, Hsiao BS, Chu B, Graham L, Glimcher MJ. Small-angle X-ray study of the three-dimensional collagen/mineral superstructure in intramuscular fish bone. J Appl Crystallogr. 2007;40:666–8.CrossRefGoogle Scholar
  319. 319.
    Serre C, Papillard M, Chavassieux P, Voegel J, Boivin G. Influence of magnesium substitution on a collagen–apatite biomaterial on the production of a calcifying matrix by human osteoblasts. J Biomed Mater Res. 1998;42:626–33.PubMedCrossRefGoogle Scholar
  320. 320.
    Suchanek WL, Byrappa K, Shuk P, Riman RE, Janas VF, TenHuisen KS. Preparation of magnesium-substituted hydroxyapatite powders by the mechanochemical–hydrothermal method. Biomaterials. 2004;25:4647–57.PubMedCrossRefGoogle Scholar
  321. 321.
    Xue W, Dahlquist K, Banerjee A, Bandyopadhyay A, Bose S. Synthesis and characterization of tricalcium phosphate with Zn and Mg based dopants. J Mater Sci Mater Med. 2008;19:2669–77.PubMedCrossRefGoogle Scholar
  322. 322.
    Landi E, Logroscino G, Proietti L, Tampieri A, Sandri M, Sprio S. Biomimetic Mg-substituted hydroxyapatite: from synthesis to in vivo behaviour. J Mater Sci Mater Med. 2008;19:239–47.PubMedCrossRefGoogle Scholar
  323. 323.
    Zhai Z, Qu X, Li H, Yang K, Wan P, Tan L, Ouyang Z, Liu X, Tian B, Xiao F, Wang W, Jiang C, Tang T, Fan Q, Qin A, Dai K. The effect of metallic magnesium degradation products on osteoclast-induced osteolysis and attenuation of NF-kappaB and NFATc1 signaling. Biomaterials. 2014;35:6299–310.PubMedCrossRefGoogle Scholar
  324. 324.
    Zhang Y, Xu J, Ruan YC, Yu MK, O'Laughlin M, Wise H, Chen D, Tian L, Shi D, Wang J, Chen S, Feng JQ, Chow DH, Xie X, Zheng L, Huang L, Huang S, Leung K, Lu N, Zhao L, Li H, Zhao D, Guo X, Chan K, Witte F, Chan HC, Zheng Y, Qin L. Implant-derived magnesium induces local neuronal production of CGRP to improve bone-fracture healing in rats. Nat Med. 2016;22:1160–9.PubMedPubMedCentralCrossRefGoogle Scholar
  325. 325.
    Zhang J, Ma X, Lin D, Shi H, Yuan Y, Tang W, Zhou H, Guo H, Qian J, Liu C. Magnesium modification of a calcium phosphate cement alters bone marrow stromal cell behavior via an integrin-mediated mechanism. Biomaterials. 2015;53:251–64.PubMedCrossRefGoogle Scholar
  326. 326.
    Lee J-W, Han H-S, Han K-J, Park J, Jeon H, Ok M-R, Seok H-K, Ahn J-P, Lee KE, Lee D-H. Long-term clinical study and multiscale analysis of in vivo biodegradation mechanism of Mg alloy. Proc Natl Acad Sci. 2016;113:716–21.PubMedPubMedCentralCrossRefGoogle Scholar
  327. 327.
    Calhoun NR, Smith JC Jr, Becker KL. The role of zinc in bone metabolism. Clin Orthop Relat Res. 1974;103:212–34.CrossRefGoogle Scholar
  328. 328.
    Coleman JE. Structure and mechanism of alkaline phosphatase. Annu Rev Biophys Biomol Struct. 1992;21:441–83.PubMedCrossRefGoogle Scholar
  329. 329.
    Hall SL, Dimai HP, Farley JR. Effects of zinc on human skeletal alkaline phosphatase activity in vitro. Calcif Tissue Int. 1999;64:163–72.PubMedCrossRefGoogle Scholar
  330. 330.
    Peter H, Amanda P, Fink JK, Sandy W, Zachary L, Brewer GJ. Myelopolyneuropathy and pancytopenia due to copper deficiency and high zinc levels of unknown origin II. The denture cream is a primary source of excessive zinc. Neurotoxicology. 2009;30:996–9.CrossRefGoogle Scholar
  331. 331.
    Masayoshi Y. Role of nutritional zinc in the prevention of osteoporosis. Mol Cell Biomech. 2010;338:241–54.CrossRefGoogle Scholar
  332. 332.
    Kawamura H, Ito A, Miyakawa S, Layrolle P, Ojima K, Ichinose N, Tateishi T. Stimulatory effect of zinc‐releasing calcium phosphate implant on bone formation in rabbit femora. J Biomed Mater Res. 2000;50:184–90.PubMedCrossRefGoogle Scholar
  333. 333.
    Yamada Y, Ito A, Kojima H, Sakane M, Miyakawa S, Uemura T, Legeros RZ. Inhibitory effect of Zn2+ in zinc-containing beta-tricalcium phosphate on resorbing activity of mature osteoclasts. J Biomed Mater Res A. 2008;84:344–52.PubMedCrossRefGoogle Scholar
  334. 334.
    Lee GR, Nacht S, Lukens JN, Cartwright GE. Iron metabolism in copper-deficient swine. J Clin Invest. 1968;47:2058–69.PubMedPubMedCentralCrossRefGoogle Scholar
  335. 335.
    Rucker RB, Riggins RS, Laughlin R, Chan MM, Chen M, Tom K. Effects of nutritional copper deficiency on the biomechanical properties of bone and arterial elastin metabolism in the chick. J Nutr. 1975;105:1062–70.PubMedCrossRefGoogle Scholar
  336. 336.
    Harris ED. A requirement for copper in angiogenesis. Nutr Rev. 2004;62:60–4.PubMedCrossRefGoogle Scholar
  337. 337.
    Hu GF. Copper stimulates proliferation of human endothelial cells under culture. J Cell Biochem. 1998;69:326–35.PubMedCrossRefGoogle Scholar
  338. 338.
    Gerard C, Ljbarralet B. The stimulation of angiogenesis and collagen deposition by copper. Biomaterials. 2010;31:824–31.PubMedCrossRefGoogle Scholar
  339. 339.
    Jake B, Uwe G, Pamela H, Elke V, Catherine G, Doillon CJ. Angiogenesis in calcium phosphate scaffolds by inorganic copper ion release. Tissue Eng Part A. 2009;15:1601–9.CrossRefGoogle Scholar
  340. 340.
    Li QF, Ding XQ, Kang YJ. Copper promotion of angiogenesis in isolated rat aortic ring: role of vascular endothelial growth factor. J Nutr Biochem. 2014;25:44–9.PubMedCrossRefGoogle Scholar
  341. 341.
    Natalia MS, Ewa S, Krishna Prasad V, Monika U, Jan N, Mateusz W, Marta K, Slawomir J, André C. Nanoparticles of copper stimulate angiogenesis at systemic and molecular level. Int J Mol Sci. 2015;16:4838–49.CrossRefGoogle Scholar
  342. 342.
    Lieberman JR, Friedlaender GE. Chapter II. Fracture repair, bone regeneration and repair. Springer; 2005. p. 1.Google Scholar
  343. 343.
    Lydia F, Suneeta M, Lyann U, Wen Z, Diane R, Stefan V, Daniel L, Jorg M, Francis I, Olopade OI. X-ray fluorescence microscopy reveals large-scale relocalization and extracellular translocation of cellular copper during angiogenesis. Proc Natl Acad Sci. 2007;104:2247–52.CrossRefGoogle Scholar
  344. 344.
    Lüthen F, Bergemann C, Bulnheim U, Prinz C, Neumann HG, Podbielski A, Bader R, Rychly J. A dual role of copper on the surface of bone implants. Mater Sci Forum, Trans Tech Publ. 2010;600–5.Google Scholar
  345. 345.
    Shi M, Chen Z, Farnaghi S, Friis T, Mao X, Xiao Y, Wu C. Copper-doped mesoporous silica nanospheres, a promising immunomodulatory agent for inducing osteogenesis. Acta Biomater. 2016;30:334–44.PubMedCrossRefGoogle Scholar
  346. 346.
    Ferenci P. Review article: diagnosis and current therapy of Wilson’s disease. Aliment Pharmacol Ther. 2004;19:157–65.PubMedCrossRefGoogle Scholar
  347. 347.
    Ricardo U, Alejandro M, Magdalena A. Estimating risk from copper excess in human populations. Am J Clin Nutr. 2008;88:867S–71S.CrossRefGoogle Scholar
  348. 348.
    Ali Z, Omrani GR, Masoud Mousavi N. Lithium’s effect on bone mineral density. Bone. 2009;44:331–4.CrossRefGoogle Scholar
  349. 349.
    Wilting I, Vries FD, Thio BMKS, Cooper C, Heerdink ER, Leufkens HGM, Nolen WA, Egberts ACG, Staa TPV. Lithium use and the risk of fractures. Bone. 2007;40:1252–8.PubMedCrossRefGoogle Scholar
  350. 350.
    Hedgepeth CM, Conrad LJ, Zhang J, Huang HC, Lee VM, Klein PS. Activation of the Wnt signaling pathway: a molecular mechanism for lithium action. Dev Biol. 1997;185:82–91.PubMedCrossRefGoogle Scholar
  351. 351.
    Chalecka-Franaszek E, Chuang DM. Lithium activates the serine/threonine kinase Akt-1 and suppresses glutamate-induced inhibition of Akt-1 activity in neurons. Proc Natl Acad Sci. 1999;96:8745–50.PubMedPubMedCentralCrossRefGoogle Scholar
  352. 352.
    Wang W, Zhao L, Wu K, Ma Q, Mei S, Chu PK, Wang Q, Zhang Y. The role of integrin-linked kinase/β-catenin pathway in the enhanced MG63 differentiation by micro/nano-textured topography. Biomaterials. 2013;34:631–40.PubMedCrossRefGoogle Scholar
  353. 353.
    Heller JL, Zieve D. Lithium toxicity. MedlinePlus; 2015.Google Scholar
  354. 354.
    Pelclova D, Sklensky M, Janicek P, Lach K. Severe cobalt intoxication following hip replacement revision: clinical features and outcome. Clin Toxicol (Phila). 2012;50:262–5.CrossRefGoogle Scholar
  355. 355.
    Griffiths J, Colvin A, Yates P, Meyerkort D, Kop A, Prosser G. Extreme cobalt toxicity: bearing the brunt of a failed ceramic liner. JBJS Case Connect. 2015;5:e92.PubMedCrossRefGoogle Scholar
  356. 356.
    Brodner W, Bitzan P, Meisinger V, Kaider A, Gottsauner-Wolf F, Kotz R. Elevated serum cobalt with metal-on-metal articulating surfaces. J Bone Joint Surg Br. 1997;79:316–21.PubMedCrossRefGoogle Scholar
  357. 357.
    Schaffer AW, Schaffer A, Pilger A, Engelhardt C, Zweymueller K, Ruediger HW. Increased blood cobalt and chromium after total hip replacement. J Toxicol Clin Toxicol. 1999;37:839–44.PubMedCrossRefGoogle Scholar
  358. 358.
    Lhotka C, Szekeres T, Steffan I, Zhuber K, Zweymüller K. Four‐year study of cobalt and chromium blood levels in patients managed with two different metal‐on‐metal total hip replacements. J Orthop Res. 2003;21:189–95.PubMedCrossRefGoogle Scholar
  359. 359.
    Steens W, von Foerster G, Katzer A. Severe cobalt poisoning with loss of sight after ceramic-metal pairing in a hip—a case report. Acta Orthop. 2006;77:830–2.PubMedCrossRefGoogle Scholar
  360. 360.
    Mao X, Wong AA, Crawford RW. Cobalt toxicity—an emerging clinical problem in patients with metal-on-metal hip prostheses. Med J Aust. 2011;194:649–51.PubMedGoogle Scholar
  361. 361.
    Sears NA, Seshadri DR, Dhavalikar PS, Cosgriff-Hernandez E. A review of three-dimensional printing in tissue engineering. Tissue Eng Part B Rev. 2016;22:298–310.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Orthopaedics and TraumatologyThe University of Hong KongPokfulamChina
  2. 2.Shenzhen Key Laboratory for Innovative Technology in Orthopaedic TraumaThe University of Hong Kong Shenzhen HospitalShenzhenChina

Personalised recommendations