Advances in Bearing Materials for Total Artificial Hip Arthroplasty

  • Rohit Khanna
Chapter

Abstract

Currently used artificial hip joints are mainly composed of femoral head of monolithic alumina or alumina-zirconia composites articulating against cross-linked polyethylene liner of acetabular cup or Co-Cr alloy in a self-mated configuration. However, possibility of fracture of ceramics or its composites, PE wear debris-induced osteolysis, and hypersensitivity issue due to metal ion release cannot be eliminated. In some cases, thin ultra-hard diamond-based, TiN coatings on Ti-6A-4V or thin zirconia layer on the Zr-Nb alloy have been fabricated to develop high wear resistant bearing surfaces. However, these coatings showed poor adhesion in tribological testing. To provide high wear resistance and mechanical reliability to femoral head, a new kind of ceramic/metal artificial hip joint hybrid was recently proposed in which a dense layer of alumina was formed onto Ti-6Al-4V alloy by deposition of Al metal layer by cold spraying or cold metal transfer methods with an Al3Ti intermetallic reaction layer at interface to improve adhesion. An optimal micro-arc oxidation treatment transformed Al to dense alumina layer. Science and technology of alumina/Ti alloy hybrid are summarized in this chapter.

Keywords

Artificial hip joint Bearing material Metallic biomaterial Polyethylene Alumina-zirconia composite Ceramic/metal hybrid Oxinium Alumina coatings Cold spraying Cold metal transfer Micro-arc oxidation Biomaterial Total hip arthroplasty 

References

  1. 1.
    Kurtz S, Ong K, Lau E, Mowat F, Halpern M. Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030. J Bone Joint Surg-Am. 2007;89A(4):780–5.Google Scholar
  2. 2.
    Renkawitz T, Santori FS, Grifka J, Valverde C, Morlock MM, Learmonth ID. A new short uncemented, proximally fixed anatomic femoral implant with a prominent lateral flare: design rationals and study design of an international clinical trial. BMC Musculoskelet Disord. 2008;9:6.CrossRefGoogle Scholar
  3. 3.
    Steens W, Boettner F, Bader R, Skripitz R, Schneeberger A. Bone mineral density after implantation of a femoral neck hip prosthesis - a prospective 5 year follow-up. BMC Musculoskelet Disord. 2015;16:7.CrossRefGoogle Scholar
  4. 4.
    Miura K, Yamada N, Hanada S, Jung TK, Itoi E. The bone tissue compatibility of a new Ti-Nb-Sn alloy with a low Young's modulus. Acta Biomater. 2011;7(5):2320–6.PubMedCrossRefGoogle Scholar
  5. 5.
    Guo S, Bao ZZ, Meng QK, Hu L, Zhao XQ, Novel Metastable A. Ti-25Nb-2Mo-4Sn Alloy with High Strength and Low Young's Modulus, Metallurgical and Materials Transactions a-Physical Metallurgy and. Mater Sci. 2012;43A(10):3447–51.Google Scholar
  6. 6.
    Niinomi M, Hattori T, Morikawa K, Kasuga T, Suzuki A, Fukui H, Niwa S. Development of low rigidity beta-type titanium alloy for biomedical applications. Mater Trans. 2002;43(12):2970–7.CrossRefGoogle Scholar
  7. 7.
    Okazaki Y. A new Ti-15Zr-4Nb-4Ta alloy for medical applications. Curr Opin Solid State Mater Sci. 2001;5(1):45–53.CrossRefGoogle Scholar
  8. 8.
    Bai X, Sandukas S, Appleford MR, Ong JL, Rabiei A. Deposition and investigation of functionally graded calcium phosphate coatings on titanium. Acta Biomater. 2009;5(9):3563–72.PubMedCrossRefGoogle Scholar
  9. 9.
    Bai X, Sandukas S, Appleford M, Ong JL, Rabiei A. Antibacterial effect and cytotoxicity of Ag-doped functionally graded hydroxyapatite coatings. J Biomed Mater Res Part B Appl Biomater. 2012;100B(2):553–61.CrossRefGoogle Scholar
  10. 10.
    Chen W, Liu Y, Courtney HS, Bettenga M, Agrawal CM, Bumgardner JD, Ong JL. In vitro anti-bacterial and biological properties of magnetron co-sputtered silver-containing hydroxyapatite coating. Biomaterials. 2006;27(32):5512–7.PubMedCrossRefGoogle Scholar
  11. 11.
    Ong JL, Lucas LC, Lacefield WR, Rigney ED. Structure, solubility and bond strength of thin calcium-phosphate coatings produced by ion-beam sputter deposition. Biomaterials. 1992;13(4):249–54.PubMedCrossRefGoogle Scholar
  12. 12.
    Yang YZ, Kim KH, Ong JL. Review on calcium phosphate coatings produced using a sputtering process - an alternative to plasma spraying. Biomaterials. 2005;26(3):327–37.PubMedCrossRefGoogle Scholar
  13. 13.
    Kim HM, Miyaji F, Kokubo T, Nakamura T. Preparation of bioactive Ti and its alloys via simple chemical surface treatment. J Biomed Mater Res. 1996;32(3):409–17.PubMedCrossRefGoogle Scholar
  14. 14.
    Kim HM, Miyaji F, Kokubo T, Nishiguchi S, Nakamura T. Graded surface structure of bioactive titanium prepared by chemical treatment. J Biomed Mater Res. 1999;45(2):100–7.PubMedCrossRefGoogle Scholar
  15. 15.
    Kim HM, Takadama H, Miyaji F, Kokubo T, Nishiguchi S, Nakamura T. Formation of bioactive functionally graded structure on Ti-6Al-4V alloy by chemical surface treatment, Journal of Materials Science-Materials in. Medicine. 2000;11(9):555–9.Google Scholar
  16. 16.
    Kizuki T, Takadama H, Matsushita T, Nakamura T, Kokubo T. Preparation of bioactive Ti metal surface enriched with calcium ions by chemical treatment. Acta Biomater. 2010;6(7):2836–42.PubMedCrossRefGoogle Scholar
  17. 17.
    Kokubo T, Pattanayak DK, Yamaguchi S, Takadama H, Matsushita T, Kawai T, Takemoto M, Fujibayashi S, Nakamura T. Positively charged bioactive Ti metal prepared by simple chemical and heat treatments. J R Soc Interface. 2010;7:S503–13.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Oral E, Christensen SD, Malhi AS, Wannomae KK, Muratoglu OK. Wear resistance and mechanical properties of highly cross-linked, ultrahigh-molecular weight polyethylene doped with vitamin E. J Arthroplasty. 2006;21(4):580–91.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Oral E, Muratoglu OK. Vitamin E diffused, highly crosslinked UHMWPE: a review. Int Orthop. 2011;35(2):215–23.PubMedCrossRefGoogle Scholar
  20. 20.
    Moro T, Kawaguchi H, Ishihara K, Kyomoto M, Karita T, Ito H, Nakamura K, Takatori Y. Wear resistance of artificial hip joints with poly(2-methacryloyloxyethyl phosphorylcholine) grafted polyethylene: Comparisons with the effect of polyethylene cross-linking and ceramic femoral heads. Biomaterials. 2009;30(16):2995–3001.PubMedCrossRefGoogle Scholar
  21. 21.
    Kyomoto M, Moro T, Iwasaki Y, Miyaji F, Kawaguchi H, Takatori Y, Nakamura K, Ishihara K. Superlubricious surface mimicking articular cartilage by grafting poly(2-methacryloyloxyethyl phosphorylcholine) on orthopaedic metal bearings. J Biomed Mater Res A. 2009;91A(3):730–41.CrossRefGoogle Scholar
  22. 22.
    Clarke IC, Manaka M, Green DD, Williams P, Pezzotti G, Kim YH, Ries M, Sugano N, Sedel L, Delauney C, Ben Nissan B, Donaldson T, Gustafson GA. Current status of zirconia used in total hip implants. J Bone Joint Surg Am. 2003;85A:73–84.CrossRefGoogle Scholar
  23. 23.
    Begand S, Oberbach T, Glien W. Investigations of the mechanical properties of an alumina toughened zirconia ceramic for an application in joint prostheses. Bioceramics. 2005;17(284–286):1019–22.Google Scholar
  24. 24.
    Al-Hajjar M, Jennings LM, Begand S, Oberbach T, Delfosse D, Fisher J. Wear of novel ceramic-on-ceramic bearings under adverse and clinically relevant hip simulator conditions. J Biomed Mater Res Part B Appl Biomater. 2013;101(8):1456–62.PubMedCrossRefGoogle Scholar
  25. 25.
    Hobbs LW, Rosen VB, Mangin SP, Treska M, Hunter G. Oxidation microstructures and interfaces in the oxidized zirconium knee. Int J Appl Ceram Technol. 2005;2(3):221–46.CrossRefGoogle Scholar
  26. 26.
    Good V, Ries M, Barrack RL, Widding K, Hunter G, Heuer D. Reduced wear with oxidized zirconium femoral heads. J Bone Joint Surg Am. 2003;85A:105–10.CrossRefGoogle Scholar
  27. 27.
    Burger W, Richter HG. High strength and toughness alumina matrix composites by transformation toughening and 'in situ' platelet reinforcement (ZPTA) - The new generation of bioceramics. Bioceramics. 2000;192-1:545–8.Google Scholar
  28. 28.
    Brown AS. Hip new world. ASME Mechanical Engineering Magazine; 2006. pp. 28–33.Google Scholar
  29. 29.
    Charnley J, Kamangar A, Longfield MD. Optimum size of prosthetic heads in relation to wear of plastic sockets in total replacement of hip. Med Biol Eng. 1969;7(1):31.PubMedCrossRefGoogle Scholar
  30. 30.
    Amstutz HC, Campbell P, Kossovsky N, Clarke IC. Mechanism and clinical-significance of wear debris-induced osteolysis. Clin Orthop Relat Res. 1992;276:7–18.Google Scholar
  31. 31.
    Boutin P. Total arthroplasty of the hip by fritted alumina prosthesis. Experimental study and 1st clinical applications. Orthop Traumatol Surg Res. 2014;100(1):15–21.PubMedCrossRefGoogle Scholar
  32. 32.
    Harris WH. The problem is osteolysis. Clin Orthop Relat Res. 1995;311:46–53.Google Scholar
  33. 33.
    Kim YH, Kim JS, Park JW, Joo JH. Periacetabular Osteolysis is the Problem in Contemporary Total Hip Arthroplasty in Young Patients. J Arthroplasty. 2012;27(1):74–81.PubMedCrossRefGoogle Scholar
  34. 34.
    Lewis G. Properties of crosslinked ultra-high-molecular-weight polyethylene. Biomaterials. 2001;22(4):371–401.PubMedCrossRefGoogle Scholar
  35. 35.
    Ishihara K. Highly lubricated polymer interfaces for advanced artificial hip joints through biomimetic design. Polym J. 2015;47(9):585–97.CrossRefGoogle Scholar
  36. 36.
    Kyomoto M, Shobuike T, Moro T, Yamane S, Takatori Y, Tanaka S, Miyamoto H, Ishihara K. Prevention of bacterial adhesion and biofilm formation on a vitamin E-blended, cross-linked polyethylene surface with a poly(2-methacryloyloxyethyl phosphorylcholine) layer. Acta Biomater. 2015;24:24–34.PubMedCrossRefGoogle Scholar
  37. 37.
    Skipor AK, Campbell PA, Patterson LM, Anstutz HC, Schmalzried TP, Jacobs JJ. Serum and urine metal levels in patients with metal-on-metal surface arthroplasty, Journal of Materials Science-Materials in. Medicine. 2002;13(12):1227–34.Google Scholar
  38. 38.
    Catelas I, Wimmer MA. New Insights into Wear and Biological Effects of Metal-on-Metal Bearings. J Bone Joint Surg Am. 2011;93A:76–83.CrossRefGoogle Scholar
  39. 39.
    Basketter DA, Briaticovangosa G, Kaestner W, Lally C, Bontinck WJ. Nickel, cobalt and chromium in consumer products - a role in allergic contact-dermatitis. Contact Dermatitis. 1993;28(1):15–25.PubMedCrossRefGoogle Scholar
  40. 40.
    Head WC, Bauk DJ, Emerson RH. Titanium as the material of choice for cementless femoral components in total hip-arthroplasty. Clin Orthop Relat Res. 1995;311:85–90.Google Scholar
  41. 41.
    Walker PR, Leblanc J, Sikorska M. Effects of aluminum and other cations on the structure of brain and liver chromatin. Biochemistry. 1989;28(9):3911–5.PubMedCrossRefGoogle Scholar
  42. 42.
    Rao S, Ushida T, Tateishi T, Okazaki Y, Asao S. Effect of Ti, Al, and V ions on the relative growth rate of fibroblasts (L929) and osteoblasts (MC3T3-E1) cells. Biomed Mater Eng. 1996;6(2):79–86.PubMedGoogle Scholar
  43. 43.
    Long M, Crooks R, Rack HJ. High-cycle fatigue performance of solution-treated metastable-beta titanium alloys. Acta Mater. 1999;47(2):661–9.CrossRefGoogle Scholar
  44. 44.
    Guleryuz H, Cimenoglu H. Surface modification of a Ti-6Al-4V alloy by thermal oxidation. Surf Coatings Technol. 2005;192(2–3):164–70.CrossRefGoogle Scholar
  45. 45.
    Guleryuz H, Cimenoglu H. Effect of thermal oxidation on corrosion and corrosion-wear behaviour of a Ti-6A1-4V alloy. Biomaterials. 2004;25(16):3325–33.PubMedCrossRefGoogle Scholar
  46. 46.
    Singh R, Kurella A, Dahotre NB. Laser surface modification of Ti-6Al-4V: Wear and corrosion characterization in simulated biofluid. J Biomater Appl. 2006;21(1):49–73.PubMedCrossRefGoogle Scholar
  47. 47.
    Li B, Shen Y, Hu W, Luo L. Surface modification of Ti-6Al-4V alloy via friction-stir processing: Microstructure evolution and dry sliding wear performance. Surf Coatings Technol. 2014;239:160–70.CrossRefGoogle Scholar
  48. 48.
    Oonishi H, Clarke IC, Good V, Amino H, Ueno M, Masuda S, Oomamiuda K, Ishimaru H, Yamamoto M, Tsuji E. Needs of bioceramics to longevity of total joint arthroplasty. Bioceramics. 2003;15(240–2):735–54.Google Scholar
  49. 49.
    Sedel L. Evolution of alumina-on-alumina implants—a review. Clin Orthop Relat Res. 2000;379:48–54.CrossRefGoogle Scholar
  50. 50.
    Sedel L. Clinical applications of ceramic-ceramic combinations in joint replacement. In: Kokubo T, editor. Bioceramics and their clinical applications. USA: Woohhead publishing limited; 2008. p. 688–98.CrossRefGoogle Scholar
  51. 51.
    Jarrett CA, Ranawat AS, Bruzzone M, Blum YC, Rodriguez JA, Ranawat CS. The Squeaking Hip: A Phenomenon of Ceramic-on-Ceramic Total Hip Arthroplasty. J Bone Joint Surg Am. 2009;91A(6):1344–9.CrossRefGoogle Scholar
  52. 52.
    Hannouche D, Zaoui A, Zadegan F, Sedel L, Nizard R. Thirty years of experience with alumina-on-alumina bearings in total hip arthroplasty. Int Orthop. 2011;35(2):207–13.PubMedCrossRefGoogle Scholar
  53. 53.
    Clarke IC, Manley MT, Implant Wear Symposium Engn W. How do alternative bearing surfaces influence wear behavior? J Am Acad Orthop Surg. 2008;16:S86–93.PubMedCrossRefGoogle Scholar
  54. 54.
    Tipper JL, Hatton A, Nevelos JE, Ingham E, Doyle C, Streicher R, Nevelos AB, Fisher J. Alumina-alumina artificial hip joints. Part II: Characterisation of the wear debris from in vitro hip joint simulations. Biomaterials. 2002;23(16):3441–8.PubMedCrossRefGoogle Scholar
  55. 55.
    Bizot P, Banallec L, Sedel L, Nizard R. Alumina-on-alumina total hip prostheses in patients 40 years of age or younger. Clin Orthop Relat Res. 2000;379:68–76.CrossRefGoogle Scholar
  56. 56.
    Bizot P, Larrouy M, Witvoet J, Sedel L, Nizard R. Press-fit metal-backed alumina sockets - A minimum 5-year followup study. Clin Orthop Relat Res. 2000;379:134–42.CrossRefGoogle Scholar
  57. 57.
    Kim YH, Kim JS, Cho SH. A comparison of polyethylene wear in hips with cobalt-chrome or zirconia heads - A prospective. Randomised study. J Bone Joint Surg Br. 2001;83B(5):742–50.Google Scholar
  58. 58.
    Wroblewski M, Siney PD, Nagai H, Fleming PA. Wear of ultra-high-molecular-weight polyethylene cup articulating with 22.225 mm zirconia diameter head in cemented total hip arthroplasty. J Orthop Sci. 2004;9(3):253–5.PubMedCrossRefGoogle Scholar
  59. 59.
    Skyrme AD, Richards S, John A, Chia M, Walter WK, Walter WL, Zicat B. Polyethylene wear rates with Zirconia and cobalt chrome heads in the ABG hip. Hip Int. 2005;15(2):63–70.PubMedCrossRefGoogle Scholar
  60. 60.
    Piconi C, Maccauro G, Pilloni L, Burger W, Muratori F, Richter HG. On the fracture of a zirconia ball head. J Mater Sci Mater Med. 2006;17(3):289–300.PubMedCrossRefGoogle Scholar
  61. 61.
    Kurtz SM, Kocagoz S, Arnholt C, Huet R, Ueno M, Walter WL. Advances in zirconia toughened alumina biomaterials for total joint replacement. J Mech Behav Biomed Mater. 2014;31:107–16.PubMedCrossRefGoogle Scholar
  62. 62.
    Green DD et al. Zirconia ceramic femoral heads in the USA- retrieved zirconia heads-2 to 10 years out., 49th Annual Meeting of the Orthopaedic Research Society, New Orleans, LA, 2003.Google Scholar
  63. 63.
    Bal BS, Rahaman MN. Orthopedic applications of silicon nitride ceramics. Acta Biomater. 2012;8(8):2889–98.PubMedCrossRefGoogle Scholar
  64. 64.
    McEntire BJ, Bal BS, Rahaman MN, Chevalier J, Pezzotti G. Ceramics and ceramic coatings in orthopaedics. J Eur Ceram Soc. 2015;35(16):4327–69.CrossRefGoogle Scholar
  65. 65.
    Chen FC, Ardell AJ. Fracture toughness of ceramics and semi-brittle alloys using a miniaturized disk-bend test. Mater Res Innov. 2000;3(5):250–62.CrossRefGoogle Scholar
  66. 66.
    Roebben G, Sarbu C, Lube T, Van der Biest O. Quantitative determination of the volume fraction of intergranular amorphous phase in sintered silicon nitride. Mater Sci Eng A. 2004;370(1–2):453–8.CrossRefGoogle Scholar
  67. 67.
    Olofsson J, Pettersson M, Teuscher N, Heilmann A, Larsson K, Grandfield K, Persson C, Jacobson S, Engqvist H. Fabrication and evaluation of SixNy coatings for total joint replacements. J Mater Sci Mater Med. 2012;23(8):1879–89.PubMedCrossRefGoogle Scholar
  68. 68.
    Pettersson M, Berlind T, Schmidt S, Jacobson S, Hultman L, Persson C, Engqvist H. Structure and composition of silicon nitride and silicon carbon nitride coatings for joint replacements. Surf Coatings Technol. 2013;235:827–34.CrossRefGoogle Scholar
  69. 69.
    Bal BS, Khandkar A, Lakshminarayanan R, Clarke I, Hoffman AA, Rahaman MN. Fabrication and Testing of Silicon Nitride Bearings in Total Hip Arthroplasty Winner of the 2007 "HAP" PAUL Award. J Arthroplasty. 2009;24(1):110–6.PubMedCrossRefGoogle Scholar
  70. 70.
    McEntire BJ, Lakshminarayanan R, Ray DA, Clarke IC, Puppulin L, Pezzotti G. Silicon Nitride Bearings for Total Joint Arthroplasty. Lubricants. 2016;4(4):35.CrossRefGoogle Scholar
  71. 71.
    Green D, Donaldson T, Williams P, Pezzotti G, Clarke I. Long term strip wear rates of 3rd and 4th generation ceramic-on-ceramic under microseparation. San Diego, California: Ann Meet Ortho Res Soc; 2007. p. 1776.Google Scholar
  72. 72.
    Clarke I, Gustafson A. The design of ceramics for joint replacement. In: Kokubo T, editor. Bioceramics and their clinical applications. Cambridge: Woodhead Publishing Limited; 2008. p. 106–32.CrossRefGoogle Scholar
  73. 73.
    Begand S, Oberbach T, Glien W. ATZ - A new material with a high potential in joint replacement. Bioceramics. 2005;17(284–286):983–6.Google Scholar
  74. 74.
    Kremers HM, Larson DR, Crowson CS, Kremers WK, Washington RE, Steiner CA, Jiranek WA, Berry DJ. Prevalence of Total Hip and Knee Replacement in the United States. J Bone Joint Surg Am. 2015;97A(17):1386–97.CrossRefGoogle Scholar
  75. 75.
    Y. Abu-Amer, I. Darwech, J.C. Clohisy, Aseptic loosening of total joint replacements: mechanisms underlying osteolysis and potential therapies, Arthritis Research & Therapy 9 (2007).Google Scholar
  76. 76.
    Narayan RJ. Nanostructured diamondlike carbon thin films for medical applications. Mater Sci Eng C. 2005;25(3):405–16.CrossRefGoogle Scholar
  77. 77.
    Pappas MJ, Makris G, Buechel FF. Titanium nitride ceramic film against polyethylene - a 48-million cycle wear test. Clin Orthop Relat Res. 1995;317:64–70.Google Scholar
  78. 78.
    Hauert R, Falub CV, Thorwarth G, Thorwarth K, Affolter C, Stiefel M, Podleska LE, Taeger G. Retrospective lifetime estimation of failed and explanted diamond-like carbon coated hip joint balls. Acta Biomater. 2012;8(8):3170–6.PubMedCrossRefGoogle Scholar
  79. 79.
    Choudhury D, Lackner JM, Major L, Morita T, Sawae Y, Bin Mamat A, Stavness I, Roy CK, Krupka I. Improved wear resistance of functional diamond like carbon coated Ti-6Al-4V alloys in an edge loading conditions. J Mech Behav Biomed Mater. 2016;59:586–95.PubMedCrossRefGoogle Scholar
  80. 80.
    Catledge SA, Vohra YK. Effect of nitrogen addition on the microstructure and mechanical properties of diamond films grown using high-methane concentrations. J Appl Phys. 1999;86(1):698–700.CrossRefGoogle Scholar
  81. 81.
    Catledge SA, Vaid R, Diggins P, Weimer JJ, Koopman M, Vohra YK. Improved adhesion of ultra-hard carbon films on cobalt-chromium orthopaedic implant alloy. J Mater Sci Mater Med. 2011;22(2):307–16.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Papo MJ, Catledge SA, Vohra YK. Mechanical wear behavior of nanocrystalline and multilayer diamond coatings on temporomandibular joint implants. J Mater Sci Mater Med. 2004;15(7):773–7.PubMedCrossRefGoogle Scholar
  83. 83.
    Amaral M, Abreu CS, Oliveira FJ, Gomes JR, Silva RF. Tribological characterization of NCD in physiological fluids. Diam Relat Mater. 2008;17(4–5):848–52.CrossRefGoogle Scholar
  84. 84.
    Vila M, Amaral M, Oliveira FJ, Silva RF, Fernandes AJS, Soares MR. Residual stress minimum in nanocrystalline diamond films. Appl Phys Lett. 2006;89(9):093109.CrossRefGoogle Scholar
  85. 85.
    Ries MD, Salehi A, Widding K, Hunter G. Polyethylene wear performance of oxidized zirconium and cobalt-chromium knee components under abrasive conditions. J Bone Joint Surg Am. 2002;84A:129–35.CrossRefGoogle Scholar
  86. 86.
    Evangelista GT, Fulkerson E, Kummer E, Di Cesare PE. Surface damage to an Oxinium femoral head prosthesis after dislocation. J Bone Joint Surg Br. 2007;89B(4):535–7.CrossRefGoogle Scholar
  87. 87.
    Jaffe WL, Strauss EJ, Cardinale M, Herrera L, Kummer FJ. Surface Oxidized Zirconium Total Hip Arthroplasty Head Damage Due to Closed Reduction. J Arthroplasty. 2009;24(6):898–902.PubMedCrossRefGoogle Scholar
  88. 88.
    Khanna R, Matsushita T, Kokubo T, Takadama H. Formation of Alumina Layer on Ti alloy for Artificial Hip Joint. Key Eng Mater. 2014;614:200.CrossRefGoogle Scholar
  89. 89.
    Khanna R, Kokubo T, Matsushita T, Nomura Y, Nose N, Oomori Y, Yoshida T, Wakita K, Takadama H. Novel artificial hip joint: A layer of alumina on Ti-6Al-4V alloy formed by Micro-arc oxidation. Mater Sci Eng C. 2015;55:393–400.CrossRefGoogle Scholar
  90. 90.
    Khanna R, Kokubo T, Matsushita T, Takadama H. Fabrication of dense α-alumina layer on Ti-6Al-4V alloy hybrid for bearing surfaces of artificial hip joint. Mater Sci Eng C Mater Biol Appl. 2016;69:1229–39.PubMedCrossRefGoogle Scholar
  91. 91.
    Khanna R, Rajeev G, Takadama H, Rao Bakshi S. Fabrication of dense alumina layer on Ti alloy hybrid by cold metal transfer and micro-arc oxidation methods. J Mater Res. 2017;32:1–10.CrossRefGoogle Scholar
  92. 92.
    Angadji A, Royle M, Collins SN, Shelton JC. Influence of cup orientation on the wear performance of metal-on-metal hip replacements. Proc Inst Mech Eng H. 2009;223(4):449–57.PubMedCrossRefGoogle Scholar
  93. 93.
    Elkins JM, O'Brien MK, Stroud NJ, Pedersen DR, Callaghan JJ, Brown TD. Hard-on-hard total hip impingement causes extreme contact stress concentrations. Clin Orthop Relat Res. 2011;469(2):454–63.PubMedCrossRefGoogle Scholar
  94. 94.
    Barrack RL, Burak C, Skinner HB. Concerns about ceramics in THA. Clin Orthop Relat Res. 2004;429:73–9.CrossRefGoogle Scholar
  95. 95.
    Langton DJ, Jameson SS, Joyce TJ, Gandhi JN, Sidaginamale R, Mereddy P, Lord J, Nargol AV. Accelerating failure rate of the ASR total hip replacement. J Bone Joint Surg Br. 2011;93(8):1011–6.PubMedCrossRefGoogle Scholar
  96. 96.
    Mao X, Tay GH, Godbolt DB, Crawford RW. Pseudotumor in a well-fixed metal-on-polyethylene uncemented hip arthroplasty. J Arthroplast. 2012;27(3):493.e13–7.CrossRefGoogle Scholar
  97. 97.
    So K, Kaneuji A, Matsumoto T, Matsuda S, Akiyama H. Is the Bone-bonding Ability of a Cementless Total Hip Prosthesis Enhanced by Alkaline and Heat Treatments? Clin Orthop Relat Res. 2013;471(12):3847–55.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Briggs EP, Walpole AR, Wilshaw PR, Karlsson M, Palsgard E. Formation of highly adherent nano-porous alumina on Ti-based substrates: a novel bone implant coating. J Mater Sci Mater Med. 2004;15(9):1021–9.PubMedCrossRefGoogle Scholar
  99. 99.
    Varlese FA, Tului M, Sabbadini S, Pellissero F, Sebastiani M, Bemporad E. Optimized coating procedure for the protection of TiAl intermetallic alloy against high temperature oxidation. Intermetallics. 2013;37:76–82.CrossRefGoogle Scholar
  100. 100.
    Zhang K, Wang QM, Sun C, Wang FH. Preparation and oxidation resistance of a crack-free Al diffusion coating on Ti22Al26Nb. Corros Sci. 2007;49(9):3598–609.CrossRefGoogle Scholar
  101. 101.
    Chu MS, Wu SK. The improvement of high temperature oxidation of Ti-50Al by sputtering Al film and subsequent interdiffusion treatment. Acta Mater. 2003;51(11):3109–20.CrossRefGoogle Scholar
  102. 102.
    Novoselova T, Celotto S, Morgan R, Fox P, O'Neill W. Formation of TiAl intermetallics by heat treatment of cold-sprayed precursor deposits. J Alloys Compd. 2007;436(1–2):69–77.CrossRefGoogle Scholar
  103. 103.
    Balani K, Laha T, Agarwal A, Karthikeyan J, Munroe N. Effect of carrier gases on microstructural and electrochemical behavior of cold-sprayed 1100 aluminum coating. Surf Coatings Technol. 2005;195(2–3):272–9.CrossRefGoogle Scholar
  104. 104.
    Kang K, Won J, Bae G, Ha S, Lee C. Interfacial bonding and microstructural evolution of Al in kinetic spraying. J Mater Sci. 2012;47(11):4649–59.CrossRefGoogle Scholar
  105. 105.
    Yerokhin AL, Nie X, Leyland A, Matthews A, Dowey SJ. Plasma electrolysis for surface engineering. Surf Coatings Technol. 1999;122(2–3):73–93.CrossRefGoogle Scholar
  106. 106.
    Nie X, Leyland A, Song HW, Yerokhin AL, Dowey SJ, Matthews A. Thickness effects on the mechanical properties of micro-arc discharge oxide coatings on aluminium alloys. Surf Coatings Technol. 1999;116:1055–60.CrossRefGoogle Scholar
  107. 107.
    Sundararajan G, Krishna LR. Mechanisms underlying the formation of thick alumina coatings through the MAO coating technology. Surf Coatings Technol. 2003;167(2–3):269–77.CrossRefGoogle Scholar
  108. 108.
    Hussein RO, Nie X, Northwood DO. Influence of process parameters on electrolytic plasma discharging behaviour and aluminum oxide coating microstructure. Surf Coatings Technol. 2010;205(6):1659–67.CrossRefGoogle Scholar
  109. 109.
    Yerokhin AL, Shatrov A, Samsonov V, Shashkov P, Pilkington A, Leyland A, Matthews A. Oxide ceramic coatings on aluminium alloys produced by a pulsed bipolar plasma electrolytic oxidation process. Surf Coatings Technol. 2005;199(2–3):150–7.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  • Rohit Khanna
    • 1
  1. 1.Department of Mechanical EngineeringThe University of Texas at San AntonioSan AntonioUSA

Personalised recommendations