Skip to main content

Materials for Orthopedic Applications

  • Chapter
  • First Online:
  • 1553 Accesses

Abstract

Orthopaedic devices come in different shapes, sizes, and forms, varying in accordance to their respective applications, sites of usage, load-bearing and non-load-bearing capacities, patient anatomy and physiology, and design requirements of medical device companies and orthopaedic surgeons. Most of these devices have geometrical features in the millimeters scale or greater. In materials science and engineering, structures like these that are relatively large have two distinct components with different energy properties namely, bulk and surface materials. Bulk components occupy a majority of the implant’s volume and determine the strength properties of the device while surface materials comprise a tiny fraction but usually dictate the biocompatibility and tissue-integration capacities of the exogenous construct.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Acumed Official Site. 2017. www.acumed.net.

  2. Aesculap Implant Systems Official Site. 2017. www.aesculapimplantsystems.com.

  3. Alphatec Spine Official Site. 2017. www.alphatecspine.com.

  4. Amedica Official Site. 2017. www.amedica.com.

  5. AristoTech Official Site. 2017. www.aristotech.de.

  6. Arthrex Official Site. 2017. www.arthrex.com.

  7. Arthrosurface Official Site. 2017. www.arthrosurface.com.

  8. Aurora Spine Official Site. 2017. www.auroraspine.us.

  9. Biotech Group Official Site. 2017. www.biotech-medical.com.

  10. Bioventus Official Site. 2017. www.bioventussurgical.com.

  11. ConforMIS Official Site. 2017. www.conformis.com.

  12. ConMed Official Site. 2017. www.conmed.com.

  13. Corin USA Official Site. 2017. www.coringroup.com.

  14. CryoLife Official Site. 2017. www.cryolife.com.

  15. DePuy Synthes Official Site. 2017. www.depuysynthes.com.

  16. Eisertech Official Site. 2017. www.eisertech.com.

  17. Eminent Spine Official Site. 2017. www.eminentspine.com.

  18. Empower Spine Official Site. 2017. www.empower-ortho.com.

  19. Exactech Official Site. 2017. www.exac.com.

  20. Geistlich Pharma Official Site. 2017. www.geistlich-pharma.com.

  21. Globus Medical Official Site. 2017. www.globusmedical.com.

  22. Hammill Medical Company Official Site. 2017. www.hammillmfg.com.

  23. ICONACY Orthopedic Implants Official Site. 2017. www.iconacy.com.

  24. Implants International Official Site. 2017. www.implantsinternational.com.

  25. Innovation Ortho Line Official Site. 2017. www.iol.company.

  26. Integra Life Sciences Official Site. 2017. www.integralife.com.

  27. Intuitive Spine (Captiva Spine) Official Site. 2017. www.captivaspine.com.

  28. K2M Official Site. 2017. www.k2m.com.

  29. Kinamed Official Site. 2017. www.kinamed.com.

  30. Lattice Biologics Official Site. 2017. www.latticebiologics.com.

  31. Medacta International Official Site. 2017. www.medacta.com.

  32. Medtronic Official Site. 2017. www.medtronic.com.

  33. Microport Orthopedics Official Site. 2017. www.ortho.microport.com.

  34. MiMedx Official Site. 2017. www.mimedx.com.

  35. Narang Medical Official Site. 2017. www.narang.com.

  36. NuVasive Official Site. 2017. www.nuvasive.com.

  37. OMNI Official Site. 2017. www.omnils.com.

  38. ORTHIMO Official Site. 2017. www.orthimo.com.

  39. Orthofix International Official Site. 2017. www.orthofix.com.

  40. Orthopaedic Implant Company Official Site. 2017. www.orthoimplantcompany.com.

  41. Osseus Official Site. 2017. www.osseus.com.

  42. Paradigm Spine Official Site. 2017. www.paradigmspine.com.

  43. Parcus Medical Official Site. 2017. www.parcusmedical.com.

  44. RTI Surgical Official Site. 2017. www.rtix.com.

  45. SeaSpine Official Site. 2017. www.seaspine.com.

  46. Simpex Medical Official Site. 2017. www.simpexmedical.com.

  47. Small Bone Innovations Official Site. 2017. www.totalsmallbone.com.

  48. Smith & Nephew Official Site. 2017. www.smith-nephew.com.

  49. Spinal Elements Official Site. 2017. www.spinalelements.com.

  50. Stryker Official Site. 2017. www.stryker.com.

  51. The Progressive Orthopaedic Company Official Site. 2017. www.progressiveorthopaedics.com.

  52. The Rhode Orthopedic Group Official Site. 2017. www.buyrog.com.

  53. Titan Spine Official Site. 2017. www.titanspine.com.

  54. United Orthopedics Corporation Official Site. 2017. www.uocusa.com.

  55. Uteshiya Medicare Official Site. 2017. www.uteshiyamedicare.com.

  56. Vertiflex Official Site. 2017. www.vertiflexspine.com.

  57. Waldemar LINK Official Site. 2017. www.linkorthopaedics.com.

  58. Wright Medical Group Official Site. 2017. www.wright.com.

  59. Xtant Medical Official Site. 2017. www.xtantmedical.com.

  60. Zimmer Biomet Official Site. 2017. www.zimmerbiomet.com.

  61. Dilisio MF, Nowinski RJ, Hatzidakis AM, Fehringer EV. Intramedullary nailing of the proximal humerus: evolution, technique, and results. J Shoulder Elb Surg. 2016;25:e130–8. https://doi.org/10.1016/j.jse.2015.11.016.

    Article  Google Scholar 

  62. Harasen G. Orthopedic hardware and equipment for the beginner. Part 2: plates and screws. Can Vet J. 2011;52:1359–60.

    PubMed  PubMed Central  Google Scholar 

  63. Hernigou P, Pariat J. History of internal fixation with plates (part 2): new developments after World War II; compressing plates and locked plates. Int Orthop. 2017;41:1489–500. https://doi.org/10.1007/s00264-016-3379-9.

    Article  PubMed  Google Scholar 

  64. Harasen G. Orthopedic hardware and equipment for the beginner: part 1: pins and wires. Can Vet J. 2011;52:1025–6.

    PubMed  PubMed Central  Google Scholar 

  65. Middernacht B, Van Tongel A, De Wilde L. A critical review on prosthetic features available for reversed total shoulder arthroplasty. Biomed Res Int. 2016;2016:3256931. https://doi.org/10.1155/2016/3256931.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Baulot E, Sirveaux F, Boileau P. Grammont’s idea: the story of Paul Grammont’s functional surgery concept and the development of the reverse principle. Clin Orthop Relat Res. 2011;469:2425–31. https://doi.org/10.1007/s11999-010-1757-y.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Swanson NA, Tromovitch TA. Suture materials, 1980s: properties, uses, and abuses. Int J Dermatol. 1982;21:373–8.

    Article  CAS  PubMed  Google Scholar 

  68. Jeys L, Korrosis S, Stewart T, Harris NJ. Bone anchors or interference screws? A biomechanical evaluation for autograft ankle stabilization. Am J Sports Med. 2004;32:1651–9. https://doi.org/10.1177/0363546504265051.

    Article  PubMed  Google Scholar 

  69. Lukas R, Sram J. Classification-related approach in the surgical treatment of thoracolumbar fractures. Indian J Orthop. 2007;41:327–31. https://doi.org/10.4103/0019-5413.36996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Rao PJ, Pelletier MH, Walsh WR, Mobbs RJ. Spine interbody implants: material selection and modification, functionalization and bioactivation of surfaces to improve osseointegration. Orthop Surg. 2014;6:81–9. https://doi.org/10.1111/os.12098.

    Article  PubMed  Google Scholar 

  71. Techmetals Official Site. 2017. www.techmetals.com.

  72. Diamanti MV, Del Curto B, Pedeferri M. Anodic oxidation of titanium: from technical aspects to biomedical applications. J Appl Biomater Biomech. 2011;9:55–69. https://doi.org/10.5301/JABB.2011.7429.

    CAS  PubMed  Google Scholar 

  73. Atici Y, Akman YE, Balioglu MB, Erdogan S. A comparison of the effects of two different techniques on shoulder balance in the treatment of congenital scoliosis: vertical expandable prosthetic titanium rib and dual growing rod. J Craniovertebr Junction Spine. 2015;6:190–4. https://doi.org/10.4103/0974-8237.167880.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Sethi A, Lee A, Vaidya R. Lumbar pedicle screw placement: using only AP plane imaging. Indian J Orthop. 2012;46:434–8. https://doi.org/10.4103/0019-5413.98832.

    Article  PubMed  PubMed Central  Google Scholar 

  75. McKay B, Sandhu HS. Use of recombinant human bone morphogenetic protein-2 in spinal fusion applications. Spine (Phila Pa 1976). 2002;27:S66–85.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roche C. de Guzman Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

de Guzman, R.C. (2017). Materials for Orthopedic Applications. In: Li, B., Webster, T. (eds) Orthopedic Biomaterials. Springer, Cham. https://doi.org/10.1007/978-3-319-73664-8_14

Download citation

Publish with us

Policies and ethics