Advertisement

Surface Modification and Coatings for Controlling the Degradation and Bioactivity of Magnesium Alloys for Medical Applications

  • Ian Johnson
  • Jiajia Lin
  • Huinan Liu
Chapter

Abstract

Magnesium (Mg) alloys have great potential as materials for biodegradable implants and devices because of their excellent mechanical and biological properties; such as the similarity of their mechanical properties to cortical bone and their osteoconductivity. However, Mg alloys degrade rapidly in vivo, which reduces the local pH and can harm cells. Coatings and surface treatments can control the degradation rate of Mg alloys by limiting the diffusion of water and ions to the Mg surface. Coatings can also increase the osteoconductivity of the surface of Mg implants. Polymers and ceramics are frequently used as coating materials, and the processes of their deposition can further tailor the properties of coatings for their intended roles. The controlled degradation and osteoconductivity of Mg implants using coatings will lead to their replacement with natural tissue after they have fulfilled their function; which will avoid foreign body complications and prevent the need for implant removal surgeries.

Keywords

Magnesium Coating Surface modification Degradation Biomedical implant Degradable metal Anodization Micro-arc oxidation Calcium phosphate Polymer Dip coating Spin coating Bioactive factor 

Notes

Acknowledgement

The authors thank U.S. National Science Foundation (Award 1512764, 1125801) and National Institutes of Health (Award 1R03AR069373-01) for financial support. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Science Foundation and National Institutes of Health.

References

  1. 1.
    Jain KK. The handbook of nanomedicine. New York: Springer; 2012.CrossRefGoogle Scholar
  2. 2.
    Mavrogenis AF, Dimitriou R, Parvizi J, Babis GC. Biology of implant osseointegration. J Musculoskelet Neuron. 2009;9(2):61–71.Google Scholar
  3. 3.
    Jiang Y, Jia T, Wooley PH, Yang SY. Current research in the pathogenesis of aseptic implant loosening associated with particulate wear debris. Acta Orthop Belg. 2013;79(1):1–9.PubMedGoogle Scholar
  4. 4.
    Darouiche RO. Treatment of infections associated with surgical implants. New Engl J Med. 2004;350(14):1422–9.PubMedCrossRefGoogle Scholar
  5. 5.
    Brady R, Calhoun J, Leid J, Shirtliff M. Infections of orthopaedic implants and devices. In: Shirtliff M, Leid J, editors. The role of biofilms in device-related infections. Berlin: Springer; 2009. p. 15–55.CrossRefGoogle Scholar
  6. 6.
    Richards RH, Palmer JD, Clarke NMP. Observations on removal of metal implants. Injury. 1992;23(1):25–8.PubMedCrossRefGoogle Scholar
  7. 7.
    Hanson B, van der Werken C, Stengel D. Surgeons’ beliefs and perceptions about removal of orthopaedic implants. BMC Musculoskelet Disord. 2008;9:73.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Helmecke P, Ezechieli M, Becher C, Kohler J, Denkena B. Resorbable interference screws made of magnesium based alloy. Biomed Tech (Berl). 2013.  https://doi.org/10.1515/bmt-2013-4074.
  9. 9.
    Erdmann N, Angrisani N, Reifenrath J, Lucas A, Thorey F, Bormann D, Meyer-Lindenberg A. Biomechanical testing and degradation analysis of MgCa0.8 alloy screws: a comparative in vivo study in rabbits. Acta Biomater. 2011;7(3):1421–8.PubMedCrossRefGoogle Scholar
  10. 10.
    Reifenrath J, Angrisani N, Erdmann N, Lucas A, Waizy H, Seitz JM, Bondarenko A, Meyer-Lindenberg A. Degrading magnesium screws ZEK100: biomechanical testing, degradation analysis and soft-tissue biocompatibility in a rabbit model. Biomed Mater. 2013;8(4):045012.PubMedCrossRefGoogle Scholar
  11. 11.
    Waksman R, Pakala R, Kuchulakanti PK, Baffour R, Hellinga D, Seabron R, Tio FO, Wittchow E, Hartwig S, Harder C, Rohde R, Heublein B, Andreae A, Waldmann K-H, Haverich A. Safety and efficacy of bioabsorbable magnesium alloy stents in porcine coronary arteries. Catheter Cardiovasc Interv. 2006;68(4):607–17.PubMedCrossRefGoogle Scholar
  12. 12.
    Bauer M, Schilling T, Weidling M, Hartung D, Biskup C, Wriggers P, Wacker F, Bach FW, Haverich A, Hassel T. Geometric adaption of biodegradable magnesium alloy scaffolds to stabilise biological myocardial grafts. Part I. J Mater Sci Mater Med. 2014;25(3):909–16.PubMedCrossRefGoogle Scholar
  13. 13.
    Lock JY, Wyatt E, Upadhyayula S, Whall A, Nuñez V, Vullev VI, Liu H. Degradation and antibacterial properties of magnesium alloys in artificial urine for potential resorbable ureteral stent applications. J Biomed Mater Res A. 2014;102(3):781–92.PubMedCrossRefGoogle Scholar
  14. 14.
    Liu L, Li N, Lei T, Li K, Zhang Y. The in vitro biological properties of Mg-Zn-Sr alloy and superiority for preparation of biodegradable intestinal anastomosis rings. Med Sci Monit. 2014;20:1056–66.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Luffy SA, Chou DT, Waterman J, Wearden PD, Kumta PN, Gilbert TW. Evaluation of magnesium-yttrium alloy as an extraluminal tracheal stent. J Biomed Mater Res A. 2014;102(3):611–20.PubMedCrossRefGoogle Scholar
  16. 16.
    Chng CB, Lau DP, Choo JQ, Chui CK. A bioabsorbable microclip for laryngeal microsurgery: design and evaluation. Acta Biomater. 2012;8(7):2835–44.PubMedCrossRefGoogle Scholar
  17. 17.
    Sebaa MA, Dhillon S, Liu H. Electrochemical deposition and evaluation of electrically conductive polymer coating on biodegradable magnesium implants for neural applications. J Mater Sci Mater Med. 2013;24(2):307–16.PubMedCrossRefGoogle Scholar
  18. 18.
    Yan WY, Berthe J, Wen C. Numerical investigation of the effect of porous titanium femoral prosthesis on bone remodeling. Mater Design. 2011;32(4):1776–82.CrossRefGoogle Scholar
  19. 19.
    Drosos GI, Babourda E, Magnissalis EA, Giatromanolaki A, Kazakos K, Verettas DA. Mechanical characterization of bone graft substitute ceramic cements. Injury. 2012;43(3):266–71.PubMedCrossRefGoogle Scholar
  20. 20.
    Sabir MI, Xu XX, Li L. A review on biodegradable polymeric materials for bone tissue engineering applications. J Mater Sci. 2009;44(21):5713–24.CrossRefGoogle Scholar
  21. 21.
    Brar HS, Platt MO, Sarntinoranont M, Martin PI, Manuel MV. Magnesium as a biodegradable and bioabsorbable material for medical implants. JOM. 2009;61(9):31–4.CrossRefGoogle Scholar
  22. 22.
    Windhagen H, Radtke K, Weizbauer A, Diekmann J, Noll Y, Kreimeyer U, Schavan R, Stukenborg-Colsman C, Waizy H. Biodegradable magnesium-based screw clinically equivalent to titanium screw in hallux valgus surgery: short term results of the first prospective, randomized, controlled clinical pilot study. Biomed Eng Online. 2013;12:62.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Zhang Y, Ren L, Li M, Lin X, Zhao HF, Yang K. Preliminary study on cytotoxic effect of biodegradation of magnesium on cancer cells. J Mater Sci Technol. 2012;28(9):769–72.CrossRefGoogle Scholar
  24. 24.
    Li RW, Kirkland NT, Truong J, Wang J, Smith PN, Birbilis N, Nisbet DR. The influence of biodegradable magnesium alloys on the osteogenic differentiation of human mesenchymal stem cells. J Biomed Mater Res A. 2014;102(12):4346–57.PubMedGoogle Scholar
  25. 25.
    Park J-W, Kim Y-J, Jang J-H, Song H. Osteoblast response to magnesium ion-incorporated nanoporous titanium oxide surfaces. Clin Oral Implants Res. 2010;21(11):1278–87.PubMedCrossRefGoogle Scholar
  26. 26.
    Janning C, Willbold E, Vogt C, Nellesen J, Meyer-Lindenberg A, Windhagen H, Thorey F, Witte F. Magnesium hydroxide temporarily enhancing osteoblast activity and decreasing the osteoclast number in peri-implant bone remodelling. Acta Biomater. 2010;6(5):1861–8.PubMedCrossRefGoogle Scholar
  27. 27.
    Castellani C, Lindtner RA, Hausbrandt P, Tschegg E, Stanzl-Tschegg SE, Zanoni G, Beck S, Weinberg AM. Bone-implant interface strength and osseointegration: biodegradable magnesium alloy versus standard titanium control. Acta Biomater. 2011;7(1):432–40.PubMedCrossRefGoogle Scholar
  28. 28.
    Waizy H, Diekmann J, Weizbauer A, Reifenrath J, Bartsch I, Neubert V, Schavan R, Windhagen H. In vivo study of a biodegradable orthopedic screw (MgYREZr-alloy) in a rabbit model for up to 12 months. J Biomater Appl. 2014;28(5):667–75.PubMedCrossRefGoogle Scholar
  29. 29.
    Zhang EL, Xu LP, Yu GN, Pan F, Yang K. In vivo evaluation of biodegradable magnesium alloy bone implant in the first 6 months implantation. J Biomed Mater Res A. 2009;90A(3):882–93.CrossRefGoogle Scholar
  30. 30.
    Witte F, Ulrich H, Rudert M, Willbold E. Biodegradable magnesium scaffolds: Part I: appropriate inflammatory response. J Biomed Mater Res A. 2007;81A(3):748–56.CrossRefGoogle Scholar
  31. 31.
    Xu LP, Yu GN, Zhang E, Pan F, Yang K. In vivo corrosion behavior of Mg-Mn-Zn alloy for bone implant application. J Biomed Mater Res A. 2007;83A(3):703–11.CrossRefGoogle Scholar
  32. 32.
    Witte F, Kaese V, Haferkamp H, Switzer E, Meyer-Lindenberg A, Wirth CJ, Windhagen H. In vivo corrosion of four magnesium alloys and the associated bone response. Biomaterials. 2005;26(17):3557–63.PubMedCrossRefGoogle Scholar
  33. 33.
    Witte F, Ulrich H, Palm C, Willbold E. Biodegradable magnesium scaffolds: Part II: peri-implant bone remodeling. J Biomed Mater Res A. 2007;81A(3):757–65.CrossRefGoogle Scholar
  34. 34.
    Zhai Z, Qu X, Li H, Yang K, Wan P, Tan L, Ouyang Z, Liu X, Tian B, Xiao F, Wang W, Jiang C, Tang T, Fan Q, Qin A, Dai K. The effect of metallic magnesium degradation products on osteoclast-induced osteolysis and attenuation of NF-kappaB and NFATc1 signaling. Biomaterials. 2014;35(24):6299–310.PubMedCrossRefGoogle Scholar
  35. 35.
    Stendig-Lindberg G, Koeller W, Bauer A, Rob PM. Experimentally induced prolonged magnesium deficiency causes osteoporosis in the rat. Eur J Intern Med. 2004;15(2):97–107.PubMedCrossRefGoogle Scholar
  36. 36.
    Nan M, Yangmei C, Bangcheng Y. Magnesium metal—a potential biomaterial with anti-bone cancer properties. J Biomed Mater Res A. 2013;102(8):2644–51.PubMedCrossRefGoogle Scholar
  37. 37.
    Saver JL, Kidwell C, Eckstein M, Starkman S, Investigators F-MPT. Prehospital neuroprotective therapy for acute stroke—results of the field administration of stroke therapy-magnesium (FAST-MAG) pilot trial. Stroke. 2004;35(5):E106–8.PubMedCrossRefGoogle Scholar
  38. 38.
    Ren L, Lin X, Tan LL, Yang K. Effect of surface coating on antibacterial behavior of magnesium based metals. Mater Lett. 2011;65(23–24):3509–11.CrossRefGoogle Scholar
  39. 39.
    Robinson DA, Griffith RW, Shechtman D, Evans RB, Conzemius MG. In vitro antibacterial properties of magnesium metal against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. Acta Biomater. 2010;6(5):1869–77.PubMedCrossRefGoogle Scholar
  40. 40.
    Tie D, Feyerabend F, Muller WD, Schade R, Liefeith K, Kainer KU, Willumeit R. Antibacterial biodegradable Mg-Ag alloys. Eur Cell Mater. 2013;25:284–98.PubMedCrossRefGoogle Scholar
  41. 41.
    Witte F. The history of biodegradable magnesium implants: a review. Acta Biomater. 2010;6(5):1680–92.PubMedCrossRefGoogle Scholar
  42. 42.
    Witte F, Reifenrath J, Muller PP, Crostack HA, Nellesen J, Bach FW, Bormann D, Rudert M. Cartilage repair on magnesium scaffolds used as a subchondral bone replacement. Materialwiss Werkst. 2006;37(6):504–8.CrossRefGoogle Scholar
  43. 43.
    Song GL. Recent progress in corrosion and protection of magnesium alloys. Adv Eng Mater. 2005;7(7):563–86.CrossRefGoogle Scholar
  44. 44.
    Lindstrom R, Johansson LG, Thompson GE, Skeldon P, Svensson JE. Corrosion of magnesium in humid air. Corros Sci. 2004;46(5):1141–58.CrossRefGoogle Scholar
  45. 45.
    Mueller WD, de Mele MFL, Nascimento ML, Zeddies M. Degradation of magnesium and its alloys: dependence on the composition of the synthetic biological media. J Biomed Mater Res A. 2009;90A(2):487–95.CrossRefGoogle Scholar
  46. 46.
    Song G, Atrens A. Understanding magnesium corrosion—a framework for improved alloy performance. Adv Eng Mater. 2003;5(12):837–58.CrossRefGoogle Scholar
  47. 47.
    Song G, Atrens A. Recent insights into the mechanism of magnesium corrosion and research suggestions. Adv Eng Mater. 2007;9(3):177–83.CrossRefGoogle Scholar
  48. 48.
    Xin Y, Huo K, Tao H, Tang G, Chu PK. Influence of aggressive ions on the degradation behavior of biomedical magnesium alloy in physiological environment. Acta Biomater. 2008;4(6):2008–15.PubMedCrossRefGoogle Scholar
  49. 49.
    Johnson I, Perchy D, Liu H. Interactions between aggressive ions and the surface of a magnesium-yttrium alloy. Conf Proc IEEE Eng Med Biol Soc. 2012;2012:5670–3.PubMedGoogle Scholar
  50. 50.
    Witte F, Fischer J, Nellesen J, Crostack HA, Kaese V, Pisch A, Beckmann F, Windhagen H. In vitro and in vivo corrosion measurements of magnesium alloys. Biomaterials. 2006;27(7):1013–8.PubMedCrossRefGoogle Scholar
  51. 51.
    Mueller WD, Nascimento ML, de Mele MFL. Critical discussion of the results from different corrosion studies of Mg and Mg alloys for biomaterial applications. Acta Biomater. 2010;6(5):1749–55.PubMedCrossRefGoogle Scholar
  52. 52.
    Jensen J, Rolfing JH, Svend Le DQ, Kristiansen AA, Nygaard JV, Hokland LB, Bendtsen M, Kassem M, Lysdahl H, Bunger CE. Surface-modified functionalized polycaprolactone scaffolds for bone repair: in vitro and in vivo experiments. J Biomed Mater Res A. 2013;102(9):2993–3003.PubMedCrossRefGoogle Scholar
  53. 53.
    Imwinkelried T, Beck S, Iizuka T, Schaller B. Effect of a plasmaelectrolytic coating on the strength retention of in vivo and in vitro degraded magnesium implants. Acta Biomater. 2013;9(10):8643–9.PubMedCrossRefGoogle Scholar
  54. 54.
    Zhang S, Zhang X, Zhao C, Li J, Song Y, Xie C, Tao H, Zhang Y, He Y, Jiang Y, Bian Y. Research on an Mg–Zn alloy as a degradable biomaterial. Acta Biomater. 2010;6(2):626–40.PubMedCrossRefGoogle Scholar
  55. 55.
    Johnson I, Akari K, Liu H. Nanostructured hydroxyapatite/poly(lactic-co-glycolic acid) composite coating for controlling magnesium degradation in simulated body fluid. Nanotechnology. 2013;24(37):375103.PubMedCrossRefGoogle Scholar
  56. 56.
    Degner J, et al. Electrochemical investigations of magnesium in DMEM with biodegradable polycaprolactone coating as corrosion barrier. Applied Surface Science. 2013;282:264–70.CrossRefGoogle Scholar
  57. 57.
    Sung HJ, Meredith C, Johnson C, Galis ZS. The effect of scaffold degradation rate on three-dimensional cell growth and angiogenesis. Biomaterials. 2004;25(26):5735–42.PubMedCrossRefGoogle Scholar
  58. 58.
    Dumas JE, Prieto EM, Zienkiewicz KJ, Guda T, Wenke JC, Bible J, Holt GE, Guelcher SA. Balancing the rates of new bone formation and polymer degradation enhances healing of weight-bearing allograft/polyurethane composites in rabbit femoral defects. Tissue Eng A. 2014;20(1–2):115–29.CrossRefGoogle Scholar
  59. 59.
    Walton M, Cotton NJ. Long-term in vivo degradation of poly-L-lactide (PLLA) in bone. J Biomater Appl. 2007;21(4):395–411.PubMedCrossRefGoogle Scholar
  60. 60.
    Pihlajamaki H, Bostman O, Tynninen O, Laitinen O. Long-term tissue response to bioabsorbable poly-L-lactide and metallic screws: an experimental study. Bone. 2006;39(4):932–7.PubMedCrossRefGoogle Scholar
  61. 61.
    Lalk M, Reifenrath J, Angrisani N, Bondarenko A, Seitz JM, Mueller PP, Meyer-Lindenberg A. Fluoride and calcium-phosphate coated sponges of the magnesium alloy AX30 as bone grafts: a comparative study in rabbits. J Mater Sci Mater Med. 2013;24(2):417–36.PubMedCrossRefGoogle Scholar
  62. 62.
    Oosterbeek RN, Seal CK, Staiger MP, Hyland MM. Topologically ordered magnesium-biopolymer hybrid composite structures. J Biomed Mater Res A. 2014;103(1):311–7.PubMedCrossRefGoogle Scholar
  63. 63.
    Walter R, Kannan MB, He Y, Sandham A. Effect of surface roughness on the in vitro degradation behaviour of a biodegradable magnesium-based alloy. Appl Surf Sci. 2013;279:343–8.CrossRefGoogle Scholar
  64. 64.
    Walter R, Kannan MB. Influence of surface roughness on the corrosion behaviour of magnesium alloy. Mater Design. 2011;32(4):2350–4.CrossRefGoogle Scholar
  65. 65.
    Suzuki K, Aoki K, Ohya K. Effects of surface roughness of titanium implants on bone remodeling activity of femur in rabbits. Bone. 1997;21(6):507–14.PubMedCrossRefGoogle Scholar
  66. 66.
    Von Der Hoh N, Bormann D, Lucas A, Denkena B, Hackenbroich C, Meyer-Lindenberg A. Influence of different surface machining treatments of magnesium-based resorbable implants on the degradation behavior in rabbits. Adv Eng Mater. 2009;11(5):B47–54.CrossRefGoogle Scholar
  67. 67.
    Allen KW, Hatzinikolaou T, Armstrong KB. A comparison of acrylic adhesives for bonding aluminum alloys after using various surface preparation methods. Int J Adhes Adhes. 1984;4(3):133–6.CrossRefGoogle Scholar
  68. 68.
    Molitor P, Barron V, Young T. Surface treatment of titanium for adhesive bonding to polymer composites: a review. Int J Adhes Adhes. 2001;21(2):129–36.CrossRefGoogle Scholar
  69. 69.
    Rojaee R, Fathi M, Raeissi K. Controlling the degradation rate of AZ91 magnesium alloy via sol-gel derived nanostructured hydroxyapatite coating. Mat Sci Eng C Mater. 2013;33(7):3817–25.CrossRefGoogle Scholar
  70. 70.
    Waterman J, et al. Corrosion resistance of biomimetic calcium phosphate coatings on magnesium due to varying pretreatment time. Mater Sci Eng B. 2011;176(20):1756–60.CrossRefGoogle Scholar
  71. 71.
    Tomozawa M, Hiromoto S. Microstructure of hydroxyapatite-and octacalcium phosphate-coatings formed on magnesium by a hydrothermal treatment at various pH values. Acta Materialia. 2011;59(1):355–63.CrossRefGoogle Scholar
  72. 72.
    Rojaee R, Fathi M, Raeissi K. Electrophoretic deposition of nanostructured hydroxyapatite coating on AZ91 magnesium alloy implants with different surface treatments. Appl Surf Sci. 2013;285(Part B):664–73.CrossRefGoogle Scholar
  73. 73.
    Guan R-G, Johnson I, Cui T, Zhao T, Zhao Z-Y, Li X, Liu H. Electrodeposition of hydroxyapatite coating on Mg-4.0Zn-1.0Ca-0.6Zr alloy and in vitro evaluation of degradation, hemolysis, and cytotoxicity. J Biomed Mater Res A. 2012;100A:999–1015.CrossRefGoogle Scholar
  74. 74.
    Conceicao d, Thiago F, et al. Corrosion protection of magnesium AZ31 alloy using poly (ether imide)[PEI] coatings prepared by the dip coating method: Influence of solvent and substrate pre-treatment. Corr Sci. 2011;53(1):338–46.CrossRefGoogle Scholar
  75. 75.
    Abdal-hay A, Barakat NAM, Lim JK. Influence of electrospinning and dip-coating techniques on the degradation and cytocompatibility of Mg-based alloy. Coll Surf A Physicochem Eng Aspects. March 2013;420(5):37–45.CrossRefGoogle Scholar
  76. 76.
    Sun J, Zhu Y, Meng L, Chen P, Shi T, Liu X, Zheng Y. Electrophoretic deposition of colloidal particles on Mg with cytocompatibility, antibacterial performance, and corrosion resistance. Acta Biomaterialia. Volume. 2016;45(1):387–98.CrossRefGoogle Scholar
  77. 77.
    Sebaa M, Nguyen TY, Dhillon S, Garcia S, Liu H. The effects of poly(3, 4-ethylenedioxythiophene) (PEDOT) coating on magnesium degradation and cytocompatibility with human embryonic stem cells for potential neural applications. J Biomed Mater Res A. 2015;103(1):25–37.PubMedCrossRefGoogle Scholar
  78. 78.
    Xu LP, Yamamoto A. Characteristics and cytocompatibility of biodegradable polymer film on magnesium by spin coating. Colloid Surface B Biointerfaces. 2012;93:67–74.PubMedCrossRefGoogle Scholar
  79. 79.
    Li LC, Gao JC, Wang Y. Evaluation of cyto-toxicity and corrosion behavior of alkali-heat-treated magnesium in simulated body fluid. Surf Coat Technol. 2004;185(1):92–8.CrossRefGoogle Scholar
  80. 80.
    Gu XN, Zheng W, Cheng Y, Zheng YF. A study on alkaline heat treated Mg-Ca alloy for the control of the biocorrosion rate. Acta Biomater. 2009;5(7):2790–9.PubMedCrossRefGoogle Scholar
  81. 81.
    Al-Abdullat Y, Tsutsumi S, Nakajima N, Ohta M, Kuwahara H, Ikeuchi K. Surface modification of magnesium by NaHCO(3) and corrosion behavior in Hank’s solution for new biomaterial applications. Mater Trans. 2001;42(8):1777–80.Google Scholar
  82. 82.
    Lorenz C, Brunner JG, Kollmannsberger P, Jaafar L, Fabry B, Virtanen S. Effect of surface pre-treatments on biocompatibility of magnesium. Acta Biomater. 2009;5(7):2783–9.PubMedCrossRefGoogle Scholar
  83. 83.
    Tan L, Wang Q, Lin X, Wan P, Zhang G, Zhang Q, Yang K. Loss of mechanical properties in vivo and bone-implant interface strength of AZ31B magnesium alloy screws with Si-containing coating. Acta Biomater. 2014;10(5):2333–40.PubMedCrossRefGoogle Scholar
  84. 84.
    Tsn SN, Park IS, Lee MH. Tailoring the composition of fluoride conversion coatings to achieve better corrosion protection of magnesium for biomedical applications. J Mater Chem B. 2014.  https://doi.org/10.1039/c3tb21565b.
  85. 85.
    Chen XB, Nisbet DR, Li RW, Smith PN, Abbott TB, Easton MA, Zhang DH, Birbilis N. Controlling initial biodegradation of magnesium by a biocompatible strontium phosphate conversion coating. Acta Biomater. 2014;10(3):1463–74.PubMedCrossRefGoogle Scholar
  86. 86.
    Ke C, Pohl K, Birbilis N, Chen X-B. Protective strontium phosphate coatings for magnesium biomaterials. Mater Sci Technol. 2014;30(5):521–6.CrossRefGoogle Scholar
  87. 87.
    Kim EJ, Bu SY, Sung MK, Choi MK. Effects of silicon on osteoblast activity and bone mineralization of MC3T3-E1 cells. Biol Trace Elem Res. 2013;152(1):105–12.PubMedCrossRefGoogle Scholar
  88. 88.
    Sun H, Wu C, Dai K, Chang J, Tang T. Proliferation and osteoblastic differentiation of human bone marrow-derived stromal cells on akermanite-bioactive ceramics. Biomaterials. 2006;27(33):5651–7.PubMedCrossRefGoogle Scholar
  89. 89.
    Sun JE, Wang JB, Jiang HF, Chen MF, Bi YZ, Liu DB. In vivo comparative property study of the bioactivity of coated Mg-3Zn-0.8Zr alloy. Mat Sci Eng C Mater. 2013;33(6):3263–72.CrossRefGoogle Scholar
  90. 90.
    Yan T, Tan L, Zhang B, Yang K. Fluoride conversion coating on biodegradable AZ31B magnesium alloy. J Mater Sci Technol. 2014;30:666–74.CrossRefGoogle Scholar
  91. 91.
    Zhao N, Workman B, Zhu DH. Endothelialization of novel magnesium-rare earth alloys with fluoride and collagen coating. Int J Mol Sci. 2014;15(4):5263–76.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Chai LY, Yu X, Yang ZH, Wang YY, Okido M. Anodizing of magnesium alloy AZ31 in alkaline solutions with silicate under continuous sparking. Corros Sci. 2008;50(12):3274–9.CrossRefGoogle Scholar
  93. 93.
    Xue DC, Yun YH, Schulz MJ, Shanov V. Corrosion protection of biodegradable magnesium implants using anodization. Mat Sci Eng C Mater. 2011;31(2):215–23.CrossRefGoogle Scholar
  94. 94.
    Murakami K, Hino M, Nakai K, Kobayashi S, Saijo A, Kanadani T. Mechanism of corrosion protection of anodized magnesium alloys. Mater Trans. 2008;49(5):1057–64.CrossRefGoogle Scholar
  95. 95.
    Jo JH, Hong JY, Shin KS, Kim HE, Koh YH. Enhancing biocompatibility and corrosion resistance of Mg implants via surface treatments. J Biomater Appl. 2012;27(4):469–76.PubMedCrossRefGoogle Scholar
  96. 96.
    Fischerauer SF, Kraus T, Wu X, Tangl S, Sorantin E, Hanzi AC, Loffler JF, Uggowitzer PJ, Weinberg AM. In vivo degradation performance of micro-arc-oxidized magnesium implants: a micro-CT study in rats. Acta Biomater. 2013;9(2):5411–20.PubMedCrossRefGoogle Scholar
  97. 97.
    Seyfoori A, Mirdamadi S, Mehrjoo M, Khavandi A. In-vitro assessments of micro arc oxidized ceramic films on AZ31 magnesium implant: degradation and cell-surface response. Prog Nat Sci Mater. 2013;23(4):425–33.CrossRefGoogle Scholar
  98. 98.
    Lin X, Wang X, Tan LL, Wan P, Yu XM, Li Q, Yang K. Effect of preparation parameters on the properties of hydroxyapatite containing micro-arc oxidation coating on biodegradable ZK60 magnesium alloy. Ceram Int. 2014;40(7):10043–51.CrossRefGoogle Scholar
  99. 99.
    Ghasemi A, Raja VS, Blawert C, Dietzel W, Kainer KU. Study of the structure and corrosion behavior of PEO coatings on AM50 maginesium. alloy by electrochemical impedance spectroscopy. Surf Coat Techol. 2008;202(15):3513–8.CrossRefGoogle Scholar
  100. 100.
    Robinson HJ, Markaki AE, Collier CA, Clyne TW. Cell adhesion to plasma electrolytic oxidation (PEO) titania coatings, assessed using a centrifuging technique. J Mech Behav Biomed Mater. 2011;4(8):2103–12.PubMedCrossRefGoogle Scholar
  101. 101.
    Sharma AK, Uma Rani R, Giri K. Studies on anodization of magnesium alloy for thermal control applications. Met Finish. 1997;95(3):43–51.CrossRefGoogle Scholar
  102. 102.
    Song GL. Corrosion prevention of magnesium alloys. Amsterdam: Elsevier Science; 2013.CrossRefGoogle Scholar
  103. 103.
    Dey A, Rani RU, Thota HK, Sharma AK, Bandyopadhyay P, Mukhopadhyay AK. Microstructural, corrosion and nanomechanical behaviour of ceramic coatings developed on magnesium AZ31 alloy by micro arc oxidation. Ceram Int. 2013;39(3):3313–20.CrossRefGoogle Scholar
  104. 104.
    Chen Z, Mao X, Tan L, Friis T, Wu C, Crawford R, Xiao Y. Osteoimmunomodulatory properties of magnesium scaffolds coated with beta-tricalcium phosphate. Biomaterials. 2014;35(30):8553–65.PubMedCrossRefGoogle Scholar
  105. 105.
    Liu GY, Tang SW, Li DC, Hu J. Self-adjustment of calcium phosphate coating on micro-arc oxidized magnesium and its influence on the corrosion behaviour in simulated body fluids. Corros Sci. 2014;79:206–14.CrossRefGoogle Scholar
  106. 106.
    Qiu X, Wan P, Tan LL, Fan XM, Yang K. Preliminary research on a novel bioactive silicon doped calcium phosphate coating on AZ31 magnesium alloy via electrodeposition. Mat Sci Eng C Mater. 2014;36:65–76.CrossRefGoogle Scholar
  107. 107.
    Ergun C, Liu HN, Halloran JW, Webster TJ. Increased osteoblast adhesion on nanograined hydroxyapatite and tricalcium phosphate containing calcium titanate. J Biomed Mater Res A. 2007;80A(4):990–7.CrossRefGoogle Scholar
  108. 108.
    Sonmez S, Aksakal B, Dikici B. Influence of hydroxyapatite coating thickness and powder particle size on corrosion performance of MA8M magnesium alloy. J Alloys Compd. 2014;596:125–31.CrossRefGoogle Scholar
  109. 109.
    Guan F, Ma S, Shi X, Ma X, Chi L, Liang S, Cui Y, Wang Z, Yao N, Guan S, Yang B. Biocompatibility of nano-hydroxyapatite/Mg-Zn-Ca alloy composite scaffolds to human umbilical cord mesenchymal stem cells from Wharton’s jelly in vitro. Sci China Life Sci. 2014;57(2):181–7.PubMedCrossRefGoogle Scholar
  110. 110.
    Ye XY, Cai S, Xu GH, Dou Y, Hu HT, Ye XJ, Zhao H, Sun XH. The influence of mesopores on the corrosion resistance of hydroxyapatite coated AZ31 Mg alloy. J Electrochem Soc. 2014;161(3):C145–50.CrossRefGoogle Scholar
  111. 111.
    Yang JX, Cui FZ, Lee IS, Zhang Y, Yin QS, Xia H, Yang SX. In vivo biocompatibility and degradation behavior of Mg alloy coated by calcium phosphate in a rabbit model. J Biomater Appl. 2012;27(2):153–64.PubMedCrossRefGoogle Scholar
  112. 112.
    Shadanbaz S, Walker J, Woodfield TBF, Staiger MP, Dias GJ. Monetite and brushite coated magnesium: in vivo and in vitro models for degradation analysis. J Mater Sci Mater M. 2014;25(1):173–83.CrossRefGoogle Scholar
  113. 113.
    Zhang Y, Zhang G, Wei M. Controlling the biodegradation rate of magnesium using biomimetic apatite coating. J Biomed Mater Res B Appl Biomater. 2009;89((2):408–14.CrossRefGoogle Scholar
  114. 114.
    Wang BC, Chang E, Lee TM, Yang CY. Changes in phases and crystallinity of plasma-sprayed hydroxyapatite coatings under heat-treatment—a quantitative study. J Biomed Mater Res. 1995;29(12):1483–92.PubMedCrossRefGoogle Scholar
  115. 115.
    Hahn BD, Park DS, Choi JJ, Ryu JH, Yoon WH, Choi JH, Kim HE, Kim SG. Aerosol deposition of hydroxyapatite-chitosan composite coatings on biodegradable magnesium alloy. Surf Coat Techol. 2011;205(8–9):3112–8.CrossRefGoogle Scholar
  116. 116.
    Bai KF, Zhang Y, Fu ZY, Zhang CL, Cui XZ, Meng EC, Guan SK, Hu JH. Fabrication of chitosan/magnesium phosphate composite coating and the in vitro degradation properties of coated magnesium alloy. Mater Lett. 2012;73:59–61.CrossRefGoogle Scholar
  117. 117.
    Gu XN, Zheng YF, Lan QX, Cheng Y, Zhang ZX, Xi TF, Zhang DY. Surface modification of an Mg-1Ca alloy to slow down its biocorrosion by chitosan. Biomed Mater. 2009;4(4):044109.PubMedCrossRefGoogle Scholar
  118. 118.
    Fekry AM, Ghoneim AA, Ameer MA. Electrochemical impedance spectroscopy of chitosan coated magnesium alloys in a synthetic sweat medium. Surf Coat Techol. 2014;238:126–32.CrossRefGoogle Scholar
  119. 119.
    Zhao J, Chen L, Yu K, Chen C, Dai Y, Qiao X, Yan Y. Biodegradation performance of a chitosan coated magnesium-zinc-tricalcium phosphate composite as an implant. Biointerphases. 2014;9(3):031004.PubMedCrossRefGoogle Scholar
  120. 120.
    Kumar MNVR. A review of chitin and chitosan applications. React Funct Polym. 2000;46(1):1–27.CrossRefGoogle Scholar
  121. 121.
    Seol YJ, Lee JY, Park YJ, Lee YM, Young-Ku ICR, Lee SJ, Han SB, Chung CP. Chitosan sponges as tissue engineering scaffolds for bone formation. Biotechnol Lett. 2004;26(13):1037–41.PubMedCrossRefGoogle Scholar
  122. 122.
    Kong M, Chen XG, Xing K, Park HJ. Antimicrobial properties of chitosan and mode of action: a state of the art review. Int J Food Microbiol. 2010;144(1):51–63.PubMedCrossRefGoogle Scholar
  123. 123.
    Benhabiles S, Salah R, Lounici H, Drouiche N, Goosen MFA, Mameri N. Antibacterial activity of chitin, chitosan and its oligomers prepared from shrimp shell waste. Food Hydrocolloid. 2012;29(1):48–56.CrossRefGoogle Scholar
  124. 124.
    Raafat D, von Bargen K, Haas A, Sahl HG. Insights into the mode of action of chitosan as an antibacterial compound. Appl Environ Microbiol. 2008;74(12):3764–73.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Kean T, Thanou M. Biodegradation, biodistribution and toxicity of chitosan. Adv Drug Deliv Rev. 2010;62(1):3–11.PubMedCrossRefGoogle Scholar
  126. 126.
    Sangeetha K, Roy A, Singh S, Lee B, Kumta PN. Novel alginate based coatings on Mg alloys. Mater Sci Eng B Adv. 2011;176(20):1703–10.CrossRefGoogle Scholar
  127. 127.
    Kunjukunju S, Roy A, Ramanathan M, Lee B, Candiello JE, Kumta PN. A layer-by-layer approach to natural polymer-derived bioactive coatings on magnesium alloys. Acta Biomater. 2013;9(10):8690–703.PubMedCrossRefGoogle Scholar
  128. 128.
    Christensen BE. Alginates as biomaterials in tissue engineering. Carbohydr Chem. 2012;37:227–58.Google Scholar
  129. 129.
    Rowley JA, Madlambayan G, Mooney DJ. Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials. 1999;20(1):45–53.PubMedCrossRefGoogle Scholar
  130. 130.
    Park CH, Pant HR, Kim CS. Effect on corrosion behavior of collagen film/fiber coated Az31 magnesium alloy. Dig J Nanomater Bios. 2013;8(3):1227–34.Google Scholar
  131. 131.
    Wagener V, Killian MS, Turhan CM, Virtanen S. Albumin coating on magnesium via linker molecules-comparing different coating mechanisms. Colloid Surface B Biointerfaces. 2013;103:586–94.PubMedCrossRefGoogle Scholar
  132. 132.
    Liu JR, Guo YN, Huang WD. Phytic acid conversion coatings on magnesium surface treatment with cerium chloride solution. Prot Met Phys Chem+. 2012;48(2):233–7.CrossRefGoogle Scholar
  133. 133.
    Pan FS, Yang X, Zhang DF. Chemical nature of phytic acid conversion coating on AZ61 magnesium alloy. Appl Surf Sci. 2009;255(20):8363–71.CrossRefGoogle Scholar
  134. 134.
    Yang X, Li L, He J, Guo H, Zhang J. In vitro corrosion and bioactivity study of surface phytic acid modified AZ31 magnesium alloy. Mater Sci Appl. 2014;5(2):59–65.Google Scholar
  135. 135.
    Cui W, Beniash E, Gawalt E, Xu Z, Sfeir C. Biomimetic coating of magnesium alloy for enhanced corrosion resistance and calcium phosphate deposition. Acta Biomater. 2013;9(10):8650–9.PubMedCrossRefGoogle Scholar
  136. 136.
    Friess W. Collagen—biomaterial for drug delivery. Eur J Pharm Biopharm. 1998;45(2):113–36.PubMedCrossRefGoogle Scholar
  137. 137.
    Lim LT, Auras R, Rubino M. Processing technologies for poly(lactic acid). Prog Polym Sci. 2008;33(8):820–52.CrossRefGoogle Scholar
  138. 138.
    Gunatillake PA, Adhikari R. Biodegradable synthetic polymers for tissue engineering. Eur Cell Mater. 2003;5:1–16. discussion 16PubMedCrossRefGoogle Scholar
  139. 139.
    Xu L, Yamamoto A. In vitro degradation of biodegradable polymer-coated magnesium under cell culture condition. Appl Surf Sci. 2012;258(17):6353–8.CrossRefGoogle Scholar
  140. 140.
    Kannan MB, Liyanaarachchi S. Hybrid coating on a magnesium alloy for minimizing the localized degradation for load-bearing biodegradable mini-implant applications. Mater Chem Phys. 2013;142(1):350–4.CrossRefGoogle Scholar
  141. 141.
    Bos RR, Rozema FR, Boering G, Nijenhuis AJ, Pennings AJ, Verwey AB, Nieuwenhuis P, Jansen HW. Degradation of and tissue reaction to biodegradable poly(L-lactide) for use as internal fixation of fractures: a study in rats. Biomaterials. 1991;12(1):32–6.PubMedCrossRefGoogle Scholar
  142. 142.
    Barber FA, Dockery WD. Long-term absorption of poly-L-lactic acid interference screws. Arthroscopy. 2006;22(8):820–6.PubMedCrossRefGoogle Scholar
  143. 143.
    Stahelin AC, Weiler A, Rufenacht H, Hoffmann R, Geissmann A, Feinstein R. Clinical degradation and biocompatibility of different bioabsorbable interference screws: a report of six cases. Arthroscopy. 1997;13(2):238–44.PubMedCrossRefGoogle Scholar
  144. 144.
    Fraser RK, Cole WG. Osteolysis after biodegradable pin fixation of fractures in children. J Bone Joint Surg Br. 1992;74(6):929–30.PubMedCrossRefGoogle Scholar
  145. 145.
    Askar I, Gultan S, Erden E, Yormuk E. Effects of polyglycolic acid bioabsorbable membrane and oxidised cellulose on the osteogenesis in bone defects: an experimental study. Acta Chir Plast. 2002;45(4):131–8.Google Scholar
  146. 146.
    Cutright DE, Beasley JD, Perez B. Histologic comparison of polylactic and polyglycolic acid sutures. Oral Surg Oral Med O. 1971;32(1):165–73.CrossRefGoogle Scholar
  147. 147.
    Huang YX, Ren J, Chen C, Ren TB, Zhou XY. Preparation and properties of poly(lactide-co-glycolide) (PLGA)/nano-hydroxyapatite (NHA) scaffolds by thermally induced phase separation and rabbit MSCs culture on scaffolds. J Biomater Appl. 2008;22(5):409–32.PubMedCrossRefGoogle Scholar
  148. 148.
    Smith LJ, Swaim JS, Yao C, Haberstroh KM, Nauman EA, Webster TJ. Increased osteoblast cell density on nanostructured PLGA-coated nanostructured titanium for orthopedic applications. Int J Nanomedicine. 2007;2(3):493–9.PubMedPubMedCentralGoogle Scholar
  149. 149.
    You Y, Lee SW, Youk JH, Min BM, Lee SJ, Park WH. In vitro degradation behaviour of non-porous ultra-fine poly(glycolic acid)/poly(L-lactic acid) fibres and porous ultra-fine poly(glycolic acid) fibres. Polym Degrad Stab. 2005;90(3):441–8.CrossRefGoogle Scholar
  150. 150.
    Lu L, Peter SJ, Lyman MD, Lai HL, Leite SM, Tamada JA, Uyama S, Vacanti JP, Langer R, Mikos AG. In vitro and in vivo degradation of porous poly(DL-lactic-co-glycolic acid) foams. Biomaterials. 2000;21(18):1837–45.PubMedCrossRefGoogle Scholar
  151. 151.
    Ostrowski NJ, Lee B, Roy A, Ramanathan M, Kumta PN. Biodegradable poly(lactide-co-glycolide) coatings on magnesium alloys for orthopedic applications. J Mater Sci Mater Med. 2013;24(1):85–96.PubMedCrossRefGoogle Scholar
  152. 152.
    Li JN, Cao P, Zhang XN, Zhang SX, He YH. In vitro degradation and cell attachment of a PLGA coated biodegradable Mg-6Zn based alloy. J Mater Sci. 2010;45(22):6038–45.CrossRefGoogle Scholar
  153. 153.
    Lee SJ, Khang G, Lee YM, Lee HB. Interaction of human chondrocytes and NIH/3T3 fibroblasts on chloric acid-treated biodegradable polymer surfaces. J Biomater Sci Polym Ed. 2002;13(2):197–212.PubMedCrossRefGoogle Scholar
  154. 154.
    Kanczler JM, Oreffo RO. Osteogenesis and angiogenesis: the potential for engineering bone. Eur Cell Mater. 2008;15:100–14.PubMedCrossRefGoogle Scholar
  155. 155.
    Abdal-hay A, Amna T, Lim JK. Biocorrosion and osteoconductivity of PCL/nHAp composite porous film-based coating of magnesium alloy. Solid State Sci. 2013;18:131–40.CrossRefGoogle Scholar
  156. 156.
    Jo JH, Li Y, Kim SM, Kim HE, Koh YH. Hydroxyapatite/poly(epsilon-caprolactone) double coating on magnesium for enhanced corrosion resistance and coating flexibility. J Biomater Appl. 2013;28(4):617–25.PubMedCrossRefGoogle Scholar
  157. 157.
    Wong K, Yeung K, Lam J, Chu P, Luk K, Cheung K. Reduction of corrosion behavior of magnesium alloy by PCL surface treatment. In: 55th Annual Meeting of the Orthopaedic Research Society, USA; 2009. p. 22–25.Google Scholar
  158. 158.
    Woodruff MA, Hutmacher DW. The return of a forgotten polymer-polycaprolactone in the 21st century. Prog Polym Sci. 2010;35(10):1217–56.CrossRefGoogle Scholar
  159. 159.
    Mobedi H, Nekoomanesh M, Orafaei H, Mivehchi H. Studying the degradation of poly(L-lactide) in presence of magnesium hydroxide. Iran Polym J. 2006;15(1):31–9.Google Scholar
  160. 160.
    Zhu B, Xu Y, Sun J, Yang L, Guo C, Liang J, Cao B. Preparation and characterization of aminated hydroxyethyl cellulose-induced biomimetic hydroxyapatite Coatings on the AZ31 magnesium alloy. Metals. 2017;7(6):214.CrossRefGoogle Scholar
  161. 161.
    Soujanya GK, Hanas T, Chakrapani VY, Sunil BR, Kumar TS. Electrospun nanofibrous polymer coated magnesium alloy for biodegradable implant applications. Procedia Mater Sci. 2014;5:817–23.CrossRefGoogle Scholar
  162. 162.
    Sun J, Zhu Y, Meng L, Wei W, Li Y, Liu X, Zheng Y. Controlled release and corrosion protection by self-assembled colloidal particles electrodeposited onto magnesium alloys. J Mater Chem B. 2015;3(8):1667–76.CrossRefGoogle Scholar
  163. 163.
    Ikada Y, Tsuji H. Biodegradable polyesters for medical and ecological applications. Macromol Rapid Comm. 2000;21(3):117–32.CrossRefGoogle Scholar
  164. 164.
    Park TG. Degradation of poly(lactic-Co-glycolic acid) microspheres—effect of copolymer composition. Biomaterials. 1995;16(15):1123–30.PubMedCrossRefGoogle Scholar
  165. 165.
    Shogren R. Water vapor permeability of biodegradable polymers. J Environ Polym Degr. 1997;5(2):91–5.CrossRefGoogle Scholar
  166. 166.
    Bai H, Huang C, Xiu H, Zhang Q, Deng H, Wang K, Chen F, Fu Q. Significantly improving oxygen barrier properties of polylactide via constructing parallel-aligned shish-kebab-like crystals with well-interlocked boundaries. Biomacromolecules. 2014;15(4):1507–14.PubMedCrossRefGoogle Scholar
  167. 167.
    Tsuji H, Okino R, Daimon H, Fujie K. Water vapor permeability of poly(lactide)s: effects of molecular characteristics and crystallinity. J Appl Polym Sci. 2006;99(5):2245–52.CrossRefGoogle Scholar
  168. 168.
    Park A, Cima LG. In vitro cell response to differences in poly-L-lactide crystallinity. J Biomed Mater Res. 1996;31(1):117–30.PubMedCrossRefGoogle Scholar
  169. 169.
    Loo SCJ, Ooi CP, Wee SHE, Boey YCF. Effect of isothermal annealing on the hydrolytic degradation rate of poly(lactide-co-glycolide) (PLGA). Biomaterials. 2005;26(16):2827–33.PubMedCrossRefGoogle Scholar
  170. 170.
    Cao Y, Croll TI, Oconnor AJ, Stevens GW, Cooper-White JJ. Systematic selection of solvents for the fabrication of 3D combined macro- and microporous polymeric scaffolds for soft tissue engineering. J Biomater Sci Polym Ed. 2006;17(4):369–402.PubMedCrossRefGoogle Scholar
  171. 171.
    Asran AS, Salama M, Popescu C, Michler GH. Solvent influences the morphology and mechanical properties of electrospun poly(L-lactic acid) scaffold for tissue engineering applications. Macromol Symp. 2010;294(1):153–61.CrossRefGoogle Scholar
  172. 172.
    Shuying G, Zhimei W, Jie R, Chunyan Z. Fabrication and characterization of electrospun poly(L-lactic acid)and poly(L-Lactide-Co-glycolide) mats as wound dressing, bioinformatics and biomedical engineering, ICBBE 2008. In: The 2nd International Conference on, 2008. p. 1514–7.Google Scholar
  173. 173.
    Ero-Phillips O, Jenkins M, Stamboulis A. Tailoring crystallinity of electrospun plla fibres by control of electrospinning parameters. Polymers. 2012;4(3):1331–48.CrossRefGoogle Scholar
  174. 174.
    Qin XH, Wu DQ. Effect of different solvents on poly(caprolactone) (PCL) electrospun nonwoven membranes. J Therm Anal Calorim. 2012;107(3):1007–13.CrossRefGoogle Scholar
  175. 175.
    Johnson I, Tian Q, Liu H. Nanostructured ceramic and ceramic-polymer composites as dual functional interface for bioresorbable metallic implants. MRS Online Proc Library. 2014;1621:39–45.Google Scholar
  176. 176.
    Liu HN, Webster TJ. Mechanical properties of dispersed ceramic nanoparticles in polymer composites for orthopedic applications. Int J Nanomedicine. 2010;5:299–313.PubMedPubMedCentralGoogle Scholar
  177. 177.
    Liu HN, Webster TJ. Enhanced biological and mechanical properties of well-dispersed nanophase ceramics in polymer composites: from 2D to 3D printed structures. Mat Sci Eng C Mater. 2011;31(2):77–89.CrossRefGoogle Scholar
  178. 178.
    Wei G, Ma PX. Structure and properties of nano-hydroxyapatite/polymer composite scaffolds for bone tissue engineering. Biomaterials. 2004;25(19):4749–57.PubMedCrossRefGoogle Scholar
  179. 179.
    Ebrahimian-Hosseinabadi M, Ashrafizadeh F, Etemadifar M, Venkatraman SS. Evaluating and modeling the mechanical properties of the prepared PLGA/nano-BCP composite scaffolds for bone tissue engineering. J Mater Sci Technol. 2011;27(12):1105–12.CrossRefGoogle Scholar
  180. 180.
    Johnson I, Wang SM, Silken C, Liu H. A systemic study on key parameters affecting nanocomposite coatings on magnesium substrates. Acta Biomater. 2016;36:332–49.PubMedCrossRefGoogle Scholar
  181. 181.
    Tian QM, Liu HN. Electrophoretic deposition and characterization of nanocomposites and nanoparticles on magnesium substrates. Nanotechnology. 2015;26(17):175102.PubMedCrossRefGoogle Scholar
  182. 182.
    Tian QM, Rivera-Castaneda L, Liu HN. Optimization of of nano-hydroxyapatite/poly(lactic-co-glycolic acid) coatings on magnesium substrates using one-step electrophoretic deposition. Mater Lett. 2017;186:12–6.CrossRefGoogle Scholar
  183. 183.
    Akagi H, Iwata M, Ichinohe T, Amimoto H, Hayashi Y, Kannno N, Ochi H, Fujita Y, Harada Y, Tagawa M, Hara Y. Hydroxyapatite/poly-L-lactide acid screws have better biocompatibility and femoral burr hole closure than does poly-L-lactide acid alone. J Biomater Appl. 2014;28(6):954–62.PubMedCrossRefGoogle Scholar
  184. 184.
    Abdal-hay A, Barakat NAM, Lim JK. Hydroxyapatite-doped poly(lactic acid) porous film coating for enhanced bioactivity and corrosion behavior of AZ31 Mg alloy for orthopedic applications. Ceram Int. 2013;39(1):183–95.CrossRefGoogle Scholar
  185. 185.
    Lock J, Nguyen TY, Liu H. Nanophase hydroxyapatite and poly(lactide-co-glycolide) composites promote human mesenchymal stem cell adhesion and osteogenic differentiation in vitro. J Mater Sci Mater Med. 2012;23(10):2543–52.PubMedCrossRefGoogle Scholar
  186. 186.
    D’Anto V, Raucci MG, Guarino V, Martina S, Valletta R, Ambrosio L. Behaviour of human mesenchymal stem cells on chemically synthesized HA-PCL scaffolds for hard tissue regeneration. J Tissue Eng Regen Med. 2013;10(2):E147–54.Google Scholar
  187. 187.
    Ngiam M, Liao SS, Patil AJ, Cheng ZY, Chan CK, Ramakrishna S. The fabrication of nano-hydroxyapatite on PLGA and PLGA/collagen nanofibrous composite scaffolds and their effects in osteoblastic behavior for bone tissue engineering. Bone. 2009;45(1):4–16.PubMedCrossRefGoogle Scholar
  188. 188.
    Hasegawa S, Ishii S, Tamura J, Furukawa T, Neo M, Matsusue Y, Shikinami Y, Okuno M, Nakamura T. A 5-7 year in vivo study of high-strength hydroxyapatite/poly(L-lactide) composite rods for the internal fixation of bone fractures. Biomaterials. 2006;27(8):1327–32.PubMedCrossRefGoogle Scholar
  189. 189.
    Shikinami Y, Matsusue Y, Nakamura T. The complete process of bioresorption and bone replacement using devices made of forged composites of raw hydroxyapatite particles/poly L-lactide (F-u-HA/PLLA). Biomaterials. 2005;26(27):5542–51.PubMedCrossRefGoogle Scholar
  190. 190.
    Barber FA, Dockery WD. Long-term absorption of beta-tricalcium phosphate poly-L-lactic acid interference screws. Arthroscopy. 2008;24(4):441–7.PubMedCrossRefGoogle Scholar
  191. 191.
    Kobayashi M, Rharbi Y, Brauge L, Cao L, Winnik MA. Effect of silica as fillers on polymer interdiffusion in poly(butyl methacrylate) latex films. Macromolecules. 2002;35(19):7387–99.CrossRefGoogle Scholar
  192. 192.
    Ma X, Zhu SJ, Wang LG, Ji CX, Ren CX, Guan SK. Synthesis and properties of a bio-composite coating formed on magnesium alloy by one-step method of micro-arc oxidation. J Alloy Compd. 2014;590:247–53.CrossRefGoogle Scholar
  193. 193.
    Pan Y, Chen C, Wang D, Zhao T. Effects of phosphates on microstructure and bioactivity of micro-arc oxidized calcium phosphate coatings on Mg–Zn–Zr magnesium alloy. Colloids Surf B Biointerfaces. 2013;109:1–9.PubMedCrossRefGoogle Scholar
  194. 194.
    Qu L, Li M, Liu M, Zhang E, Ma C. Microstructure and corrosion resistance of ultrasonic micro-arc oxidation biocoatings on magnesium alloy. J Adv Ceram. 2013;2(3):227–34.CrossRefGoogle Scholar
  195. 195.
    Liu G, Hu J, Ding Z, Wang C. Bioactive calcium phosphate coating formed on micro-arc oxidized magnesium by chemical deposition. Appl Surf Sci. 2011;257(6):2051–7.CrossRefGoogle Scholar
  196. 196.
    Tang H, Yu D, Luo Y, Wang F. Preparation and characterization of HA microflowers coating on AZ31 magnesium alloy by micro-arc oxidation and a solution treatment. Appl Surf Sci. 2013;264:816–22.CrossRefGoogle Scholar
  197. 197.
    Gao J, Guan S, Chen J, Wang L, Zhu S, Hu J, Ren Z. Fabrication and characterization of rod-like nano-hydroxyapatite on MAO coating supported on Mg–Zn–Ca alloy. Appl Surf Sci. 2011;257(6):2231–7.CrossRefGoogle Scholar
  198. 198.
    Zhao QM, Guo X, Dang XQ, Hao JM, Lai JH, Wang KZ. Preparation and properties of composite MAO/ECD coatings on magnesium alloy. Colloid Surface B Biointerfaces. 2013;102:321–6.CrossRefGoogle Scholar
  199. 199.
    Alabbasi A, Kannan MB, Blawert C. Dual layer inorganic coating on magnesium for delaying the biodegradation for bone fixation implants. Mater Lett. 2014;124:188–91.CrossRefGoogle Scholar
  200. 200.
    Razavi M, Fathi M, Savabi O, Beni BH, Razavi SM, Vashaee D, Tayebi L. Coating of biodegradable magnesium alloy bone implants using nanostructured diopside (CaMgSi2O6). Appl Surf Sci. 2014;288:130–7.CrossRefGoogle Scholar
  201. 201.
    Razavi M, Fathi M, Savabi O, Beni BH, Vashaee D, Tayebi L. Nanostructured merwinite bioceramic coating on Mg alloy deposited by electrophoretic deposition. Ceram Int. 2014;40(7):9473–84.CrossRefGoogle Scholar
  202. 202.
    Razavi M, Fath M, Savabi O, Razavi SM, Beni BH, Vashaee D, Tayebi L. Controlling the degradation rate of bioactive magnesium implants by electrophoretic deposition of akermanite coating. Ceram Int. 2014;40(3):3865–72.CrossRefGoogle Scholar
  203. 203.
    Razavi M, Fathi M, Savabi O, Razavi SM, Heidari F, Manshaei M, Vashaee D, Tayebi L. In vivo study of nanostructured diopside (CaMgSi2O6) coating on magnesium alloy as biodegradable orthopedic implants. Appl Surf Sci. 2014;313:60–6.CrossRefGoogle Scholar
  204. 204.
    Guo MQ, Cao L, Lu P, Liu Y, Xu XH. Anticorrosion and cytocompatibility behavior of MAO/PLLA modified magnesium alloy WE42. J Mater Sci Mater Med. 2011;22(7):1735–40.PubMedCrossRefGoogle Scholar
  205. 205.
    Alabbasi A, Mehjabeen A, Kannan MB, Ye Q, Blawert C. Biodegradable polymer for sealing porous PEO layer on pure magnesium: an in vitro degradation study. Appl Surf Sci. 2014;301:463–7.CrossRefGoogle Scholar
  206. 206.
    Ostrowski N, Lee B, Enick N, Carlson B, Kunjukunju S, Roy A, Kumta PN. Corrosion protection and improved cytocompatibility of biodegradable polymeric layer-by-layer coatings on AZ31 magnesium alloys. Acta Biomater. 2013;9(10):8704–13.PubMedCrossRefGoogle Scholar
  207. 207.
    Lu P, Cao L, Liu Y, Xu XH, Wu XF. Evaluation of magnesium ions release, biocorrosion, and hemocompatibility of MAO/PLLA-modified magnesium alloy WE42. J Biomed Mater Res B. 2011;96B(1):101–9.CrossRefGoogle Scholar
  208. 208.
    Wei Z, Tian P, Liu X, Zhou B. In vitro degradation, hemolysis, and cytocompatibility of PEO/PLLA composite coating on biodegradable AZ31 alloy. J Biomed Mater Res B Appl Biomater. 2015;103(2):342–54.PubMedCrossRefGoogle Scholar
  209. 209.
    Gnedenkov SV, Sinebryukhov SL, Zavidnaya AG, Egorkin VS, Puz’ AV, Mashtalyar DV, Sergienko VI, Yerokhin AL, Matthews A. Composite hydroxyapatite–PTFE coatings on Mg–Mn–Ce alloy for resorbable implant applications via a plasma electrolytic oxidation-based route. J Taiwan Inst Chem Eng. 2014;45:3104–9.CrossRefGoogle Scholar
  210. 210.
    Gnedenkov SV, Sinebryukhov SL, Mashtalyar DV, Egorkin VS, Sidorova MV, Gnedenkov AS. Composite polymer-containing protective coatings on magnesium alloy MA8. Corros Sci. 2014;85(0):52–9.CrossRefGoogle Scholar
  211. 211.
    Li L-H, Sankara Narayanan TSN, Kim YK, Kong Y-M, Park IS, Bae TS, Lee MH. Deposition of microarc oxidation–polycaprolactone duplex coating to improve the corrosion resistance of magnesium for biodegradable implants. Thin Solid Films. 2014;562(0):561–7.CrossRefGoogle Scholar
  212. 212.
    Wei Z, Tian P, Liu X, Zhou B. Hemocompatibility and selective cell fate of polydopamine-assisted heparinized PEO/PLLA composite coating on biodegradable AZ31 alloy. Colloids Surf B Biointerfaces. 2014;121:451–60.PubMedCrossRefGoogle Scholar
  213. 213.
    Qi ZR, Zhang Q, Tan LL, Lin X, Yin Y, Wang XL, Yang K, Wang Y. Comparison of degradation behavior and the associated bone response of ZK60 and PLLA in vivo. J Biomed Mater Res A. 2014;102(5):1255–63.PubMedCrossRefGoogle Scholar
  214. 214.
    Xu X, Lu P, Guo M, Fang M. Cross-linked gelatin/nanoparticles composite coating on micro-arc oxidation film for corrosion and drug release. Appl Surf Sci. 2010;256(8):2367–71.CrossRefGoogle Scholar
  215. 215.
    Lu P, Fan HN, Liu Y, Cao L, Wu XF, Xu XH. Controllable biodegradability, drug release behavior and hemocompatibility of PTX-eluting magnesium stents. Colloid Surface B Biointerfaces. 2011;83(1):23–8.PubMedCrossRefGoogle Scholar
  216. 216.
    Luo XL, Cui XYT. Electrochemical deposition of conducting polymer coatings on magnesium surfaces in ionic liquid. Acta Biomater. 2011;7(1):441–6.PubMedCrossRefGoogle Scholar
  217. 217.
    Liu H, Webster TJ. Ceramic/polymer nanocomposites with tunable drug delivery capability at specific disease sites. J Biomed Mater Res A. 2010;93(3):1180–92.PubMedGoogle Scholar
  218. 218.
    Wong HM, et al. A biodegradable polymer-based coating to control the performance of magnesium alloy orthopaedic implants. Biomaterials. 2010;31(8):2084–96.PubMedCrossRefGoogle Scholar
  219. 219.
    Razavi M, et al. Biodegradation, bioactivity and in vivo biocompatibility analysis of plasma electrolytic oxidized (PEO) biodegradable Mg implants. Phys Sci Inter J. 2014;4(5):708.CrossRefGoogle Scholar
  220. 220.
    Lu P, et al. Evaluation of magnesium ions release, biocorrosion, and hemocompatibility of MAO/PLLA‐modified magnesium alloy WE42. J Biomed Mater Res B Appl Biomater. 2011;96(1):101–9.PubMedCrossRefGoogle Scholar
  221. 221.
    Tan L -l, et al. Preparation and characterization of Ca-P coating on AZ31 magnesium alloy. Trans Nonferrous Metals Soc China. 2010;20:s648–54.CrossRefGoogle Scholar
  222. 222.
    Wang J, et al. A surface-eroding poly (1, 3-trimethylene carbonate) coating for fully biodegradable magnesium-based stent applications: toward better biofunction, biodegradation and biocompatibility. Acta Biomater. 2013;9(10):8678–89.PubMedCrossRefGoogle Scholar
  223. 223.
    Yang X, et al. Enhanced in vitro biocompatibility/bioactivity of biodegradable Mg–Zn–Zr alloy by micro-arc oxidation coating contained Mg2 SiO4. Surf Coat Technol. 2013;233:65–73.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Dental and Craniofacial Trauma ResearchUS Army Institute of Surgical ResearchHoustonUSA
  2. 2.Department of BioengineeringUniversity of California, RiversideRiversideUSA
  3. 3.Materials Science and EngineeringUniversity of CaliforniaRiversideUSA

Personalised recommendations