Peptides as Orthopedic Biomaterials

  • Derek E. Andreini
  • Zachary J. Werner
  • Christopher D. Bell
  • Malcolm Xing
  • Bingyun Li


Biodegradable metals, including magnesium (Mg), iron (Fe) and zinc (Zn), have been proposed and developed for temporary implants with the expectation to degrade and be absorbed gradually in vivo during the tissue healing process. Compared to Mg alloys and Fe alloys, the standard electrode potential of Zn is between that of Mg and Fe, so its degradation rate has been proved to be more likely in line with the clinical demand. In addition, Zn is one of the essential trace elements in human body and plays essential roles in many enzymes and in cell metabolic activity, proliferation and differentiation. Therefore, the recent progress of Zn-based metallic biomaterials is reviewed in this chapter for the development of high-performance metallic biomaterials.


Peptide Antimicrobial Infection Drug delivery Protein Hydrogel Antibiotic Polymer Tissue engineering Arthritis Bone tumor Biomarker Osteoporosis Growth factor 



We acknowledge financial support from AO Foundation (Project S-13-15 L was supported by the AO Foundation), Osteosynthesis & Trauma Care Foundation, the West Virginia National Aeronautics and Space Administration Experimental Program to Stimulate Competitive Research (WV NASA EPSCoR), NIH Grant P20GM103434, and the National Institute of General Medical Sciences of the National Institutes of Health under Award Number 2U54GM104942-02. This work was also supported by the Office of the Assistant Secretary of Defense for Health Affairs, through the Peer Reviewed Medical Research Program, Discovery Award under Award No. W81XWH-17-1-0603. Opinions, interpretations, conclusions, and recommendations are those of the authors and are not necessarily endorsed by the funding agencies. C.B., D.A., and Z.W. acknowledge fellowships from WVU Intro program. We thank Suzanne Danley for proofreading.


  1. 1.
    Li Y. Recombinant production of antimicrobial peptides in Escherichia coli: a review. Protein Expr Purif. 2011;80(2):260–7.PubMedCrossRefGoogle Scholar
  2. 2.
    Liu M, Wang Y, Liu Y, Ruan R. Bioactive peptides derived from traditional Chinese medicine and traditional Chinese food: a review. Food Res Int. 2016;89:63–73.PubMedCrossRefGoogle Scholar
  3. 3.
    Singh BP, Vij S, Hati S. Functional significance of bioactive peptides derived from soybean. Peptides. 2014;54:171–9.PubMedCrossRefGoogle Scholar
  4. 4.
    Vlieghe P, Lisowski V, Martinez J, Khrestchatisky M. Synthetic therapeutic peptides: science and market. Drug Discov Today. 2010;15(1):40–56.PubMedCrossRefGoogle Scholar
  5. 5.
    Chesnut C, Azria M, Silverman S, Engelhardt M, Olson M, Mindeholm L. Salmon calcitonin: a review of current and future therapeutic indications. Osteoporos Int. 2008;19(4):479–91.PubMedCrossRefGoogle Scholar
  6. 6.
    Ray MV, Meenan CP, Consalvo AP, Smith CA, Parton DP, Sturmer AM, Shields PP, Mehta NM. Production of salmon calcitonin by direct expression of a glycine-extended precursor in Escherichia coli. Protein Expr Purif. 2002;26(2):249–59.PubMedCrossRefGoogle Scholar
  7. 7.
    Ogawa K, Ishizaki A, Takai K, Kitamura Y, Kiwada T, Shiba K, Odani A. Development of novel radiogallium-labeled bone imaging agents using oligo-aspartic acid peptides as carriers. PLoS One. 2013;8(12):e84335.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Andersson L, Blomberg L, Flegel M, Lepsa L, Nilsson B, Verlander M. Large‐scale synthesis of peptides. Pept Sci. 2000;55(3):227–50.CrossRefGoogle Scholar
  9. 9.
    Li H, Aneja R, Chaiken I. Click chemistry in peptide-based drug design. Molecules. 2013;18(8):9797–817.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Muheem A, Shakeel F, Jahangir MA, Anwar M, Mallick N, Jain GK, Warsi MH, Ahmad FJ. A review on the strategies for oral delivery of proteins and peptides and their clinical perspectives. Saudi Pharm J. 2016;24(4):413–28.PubMedCrossRefGoogle Scholar
  11. 11.
    Gupta S, Jain A, Chakraborty M, Sahni JK, Ali J, Dang S. Oral delivery of therapeutic proteins and peptides: a review on recent developments. Drug Deliv. 2013;20(6):237–46.PubMedCrossRefGoogle Scholar
  12. 12.
    Chereddy KK, Her CH, Comune M, Moia C, Lopes A, Porporato PE, Vanacker J, Lam MC, Steinstraesser L, Sonveaux P, Zhu H, Ferreira LS, Vandermeulen G, Preat V. PLGA nanoparticles loaded with host defense peptide LL37 promote wound healing. J Control Release. 2014;194:138–47.PubMedCrossRefGoogle Scholar
  13. 13.
    Karimi M, Mirshekari H, Moosavi Basri SM, Bahrami S, Moghoofei M, Hamblin MR. Bacteriophages and phage-inspired nanocarriers for targeted delivery of therapeutic cargos. Adv Drug Deliv Rev. 2016;106(Pt A):45–62. PMCID:Pmc5026880PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Barros SM, Whitaker SK, Sukthankar P, Avila LA, Gudlur S, Warner M, Beltrao EI, Tomich JM. A review of solute encapsulating nanoparticles used as delivery systems with emphasis on branched amphipathic peptide capsules. Arch Biochem Biophys. 2016;596:22–42. PMCID:Pmc4841695PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Chen WY, Chang HY, JK L, Huang YC, Harroun SG, Tseng YT, Li YJ, Huang CC, Chang HT. Self‐assembly of antimicrobial peptides on gold nanodots: against multidrug‐resistant bacteria and wound‐healing application. Adv Funct Mater. 2015;25(46):7189–99.CrossRefGoogle Scholar
  16. 16.
    Cheng H, Yue K, Kazemzadeh-Narbat M, Liu Y, Khalilpour A, Li B, Zhang YS, Annabi N, Khademhosseini A. Mussel-inspired multifunctional hydrogel coating for prevention of infections and enhanced osteogenesis. ACS Appl Mater Interfaces. 2017;9(13):11428–39.PubMedCrossRefGoogle Scholar
  17. 17.
    Zhao QH, Li HS, Li BY. Nanoencapsulating living biological cells using electrostatic layer-by-layer self-assembly: Platelets as a model. J Mater Res. 2011;26(2):347–51.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Jiang BB, DeFusco E, Li BY. Polypeptide multilayer film co-delivers oppositely-charged drug molecules in sustained manners. Biomacromolecules. 2010;11(12):3630–7.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Li HS, Ogle H, Jiang BB, Hagar M, Li BY. Cefazolin embedded biodegradable polypeptide nanofilms promising for infection prevention: a preliminary study on cell responses. J Orthop Res. 2010;28(8):992–9.PubMedPubMedCentralGoogle Scholar
  20. 20.
    Li B, Jiang B, Dietz MJ, Smith ES, Clovis NB, Rao KM. Evaluation of local MCP-1 and IL-12 nanocoatings for infection prevention in open fractures. J Orthop Res. 2010;28(1):48–54. PMCID:PMC3886371PubMedGoogle Scholar
  21. 21.
    Li B, Jiang B, Boyce BM, Lindsey BA. Multilayer polypeptide nanoscale coatings incorporating IL-12 for the prevention of biomedical device-associated infections. Biomaterials. 2009;30(13):2552–8. PMCID:PMC3699876PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Jiang B, Li B. Tunable drug loading and release from polypeptide multilayer nanofilms. Int J Nanomed. 2009;4:37–53. PMCID:PMC2720742Google Scholar
  23. 23.
    Jiang B, Li B. Polypeptide nanocoatings for preventing dental and orthopaedic device-associated infection: pH-induced antibiotic capture, release, and antibiotic efficacy. J Biomed Mater Res B Appl Biomater. 2009;88((2):332–8.CrossRefGoogle Scholar
  24. 24.
    Jiang B, Barnett JB, Li B. Advances in polyelectrolyte multilayer nanofilms as tunable drug delivery systems. Nanotechnol Sci Appl. 2009;2:21.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Likibi F, Jiang BB, Li BY. Biomimetic nanocoating promotes osteoblast cell adhesion on biomedical implants. J Mater Res. 2008;23(12):3222–8.CrossRefGoogle Scholar
  26. 26.
    Li BY, Haynie DT. Multilayer biomimetics: Reversible covalent stabilization of a nanostructured biofilm. Biomacromolecules. 2004;5(5):1667–70.PubMedCrossRefGoogle Scholar
  27. 27.
    Li B, Haynie DT, Palath N, Janisch D. Nanoscale biomimetics: fabrication and optimization of stability of peptide-based thin films. J Nanosci Nanotechnol. 2005;5(12):2042–9.PubMedCrossRefGoogle Scholar
  28. 28.
    Li B, Rozas J, Haynie DT. Structural stability of polypeptide nanofilms under extreme conditions. Biotechnol Prog. 2006;22(1):111–7.PubMedCrossRefGoogle Scholar
  29. 29.
    Ardura JA, Portal-Nunez S, Lozano D, Gutierrez-Rojas I, Sanchez-Salcedo S, Lopez-Herradon A, Mulero F, Villanueva-Penacarrillo ML, Vallet-Regi M, Esbrit P. Local delivery of parathyroid hormone-related protein-derived peptides coated onto a hydroxyapatite-based implant enhances bone regeneration in old and diabetic rats. J Biomed Mater Res A. 2016;104(8):2060–70.PubMedCrossRefGoogle Scholar
  30. 30.
    Wojtowicz AM, Shekaran A, Oest ME, Dupont KM, Templeman KL, Hutmacher DW, Guldberg RE, Garcia AJ. Coating of biomaterial scaffolds with the collagen-mimetic peptide GFOGER for bone defect repair. Biomaterials. 2010;31(9):2574–82. PMCID:Pmc2813962PubMedCrossRefGoogle Scholar
  31. 31.
    Gao X, Zhang X, Song J, Xu X, Xu A, Wang M, Xie B, Huang E, Deng F, Wei S. Osteoinductive peptide-functionalized nanofibers with highly ordered structure as biomimetic scaffolds for bone tissue engineering. Int J Nanomed. 2015;10:7109–28. PMCID:Pmc4655957Google Scholar
  32. 32.
    Bain JL, Culpepper BK, Reddy MS, Bellis SL. Comparing variable-length polyglutamate domains to anchor an osteoinductive collagen-mimetic peptide to diverse bone grafting materials. Int J Oral Maxillofac Implants. 2014;29(6):1437–45. PMCID:Pmc4504020PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Liu R, Wu X, Li J, Liu X, Huang Z, Yuan Y, Gao X, Lin B, Yu B, Chen Y. The promotion of bone tissue regeneration by BMP2-derived peptide P24-loaded calcium phosphate cement microspheres. Ceram Int. 2016;42(2):3177–89.CrossRefGoogle Scholar
  34. 34.
    Ko E, Yang K, Shin J, Cho SW. Polydopamine-assisted osteoinductive peptide immobilization of polymer scaffolds for enhanced bone regeneration by human adipose-derived stem cells. Biomacromolecules. 2013;14(9):3202–13.PubMedCrossRefGoogle Scholar
  35. 35.
    Pan H, Zheng Q, Guo X, Wu Y, Polydopamine-assisted WB. BMP-2-derived peptides immobilization on biomimetic copolymer scaffold for enhanced bone induction in vitro and in vivo. Colloids Surf B Biointerfaces. 2016;142:1–9.PubMedCrossRefGoogle Scholar
  36. 36.
    Ryu J-J, Park K, Kim H-S, Jeong C-M, Huh J-B. Effects of anodized titanium with Arg-Gly-Asp (RGD) peptide immobilized via chemical grafting or physical adsorption on bone cell adhesion and differentiation. Int J Oral Maxillofac Implants. 2013;28(4):963–72.PubMedCrossRefGoogle Scholar
  37. 37.
    Cao X, Yu WQ, Qiu J, Zhao YF, Zhang YL, Zhang FQ. RGD peptide immobilized on TiO2 nanotubes for increased bone marrow stromal cells adhesion and osteogenic gene expression. J Mater Sci Mater Med. 2012;23(2):527–36.PubMedCrossRefGoogle Scholar
  38. 38.
    Oh S, Moon KS, Lee SH. Effect of RGD peptide-coated TiO2 nanotubes on the attachment, proliferation, and functionality of bone-related cells. J Nanomater. 2013;2013:9.Google Scholar
  39. 39.
    Kim JE, Kim SH, Jung Y. situ chondrogenic differentiation of bone marrow stromal cells in bioactive self-assembled peptide gels. J Biosci Bioeng. 2015;120(1):91–8.PubMedCrossRefGoogle Scholar
  40. 40.
    Li J, Jin L, Wang M, Zhu S, Xu S. Repair of rat cranial bone defect by using bone morphogenetic protein-2-related peptide combined with microspheres composed of polylactic acid/polyglycolic acid copolymer and chitosan. Biomed Mater. 2015;10(4):045004.PubMedCrossRefGoogle Scholar
  41. 41.
    Pigossi SC, de Oliveira GJ, Finoti LS, Nepomuceno R, Spolidorio LC, Rossa C Jr, Ribeiro SJ, Saska S, Scarel-Caminaga RM. Bacterial cellulose-hydroxyapatite composites with osteogenic growth peptide (OGP) or pentapeptide OGP on bone regeneration in critical-size calvarial defect model. J Biomed Mater Res A. 2015;103(10):3397–406.PubMedCrossRefGoogle Scholar
  42. 42.
    Pinheiro da Silva F, Machado MC. Antimicrobial peptides: clinical relevance and therapeutic implications. Peptides. 2012;36(2):308–14.PubMedCrossRefGoogle Scholar
  43. 43.
    Noore J, Noore A, Li B. Cationic antimicrobial peptide LL-37 is effective against both extra- and intracellular Staphylococcus aureus. Antimicrob Agents Chemother. 2013;57(3):1283–90. PMCID:3591932PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Song DW, Kim SH, Kim HH, Lee KH, Ki CS, Park YH. Multi-biofunction of antimicrobial peptide-immobilized silk fibroin nanofiber membrane: Implications for wound healing. Acta Biomater. 2016;39:146–55.PubMedCrossRefGoogle Scholar
  45. 45.
    Choe H, Narayanan AS, Gandhi DA, Weinberg A, Marcus RE, Lee Z, Bonomo RA, Greenfield EM. Immunomodulatory peptide IDR-1018 decreases implant infection and preserves osseointegration. Clin Orthop Relat Res. 2015;473(9):2898–907. PMCID:Pmc4523515PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Pletzer D, Hancock RE. Antibiofilm peptides: potential as broad-spectrum agents. J Bacteriol. 2016;198(19):2572–8.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Seo M-D, Won H-S, Kim J-H, Mishig-Ochir T, Lee B-J. Antimicrobial peptides for therapeutic applications: a review. Molecules. 2012;17(10):12276–86.PubMedCrossRefGoogle Scholar
  48. 48.
    Stallmann HP, Faber C, Amerongen AVN, Wuisman PI. Antimicrobial peptides: review of their application in musculoskeletal infections. Injury. 2006;37(2):S34–40.PubMedCrossRefGoogle Scholar
  49. 49.
    Hankenson KD, Zimmerman G, Marcucio R. Biological perspectives of delayed fracture healing. Injury. 2014;45(Suppl 2):S8–15. PMCID:Pmc4406220PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Zura R, Della Rocca GJ, Mehta S, Harrison A, Brodie C, Jones J, Steen RG. Treatment of chronic (>1 year) fracture nonunion: heal rate in a cohort of 767 patients treated with low-intensity pulsed ultrasound (LIPUS). Injury. 2015;46(10):2036–41.PubMedCrossRefGoogle Scholar
  51. 51.
    Wu G, Pan M, Wang X, Wen J, Cao S, Li Z, Li Y, Qian C, Liu Z, Wu W, Zhu L, Guo J. Osteogenesis of peripheral blood mesenchymal stem cells in self assembling peptide nanofiber for healing critical size calvarial bony defect. Sci Rep. 2015;5:16681. PMCID:Pmc4645224PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Ceylan H, Urel M, Erkal TS, Tekinay AB, Dana A, Guler MO. Mussel inspired dynamic cross‐linking of self‐healing peptide nanofiber network. Adv Funct Mater. 2013;23(16):2081–90.CrossRefGoogle Scholar
  53. 53.
    Gelain F, Silva D, Caprini A, Taraballi F, Natalello A, Villa O, Nam KT, Zuckermann RN, Doglia SM, Vescovi A. BMHP1-derived self-assembling peptides: hierarchically assembled structures with self-healing propensity and potential for tissue engineering applications. ACS Nano. 2011;5(3):1845–59.PubMedCrossRefGoogle Scholar
  54. 54.
    Schneider A, Garlick JA, Egles C. Self-assembling peptide nanofiber scaffolds accelerate wound healing. PLoS One. 2008;3(1):e1410.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Wu Y, Jia Z, Liu L, Zhao Y, Li H, Wang C, Tao H, Tang Y, He Q, Ruan D. Functional self‐assembled peptide nanofibers for bone marrow mesenchymal stem cell encapsulation and regeneration in nucleus pulposus. Artif Organs. 2016;40(6):E112–9.PubMedCrossRefGoogle Scholar
  56. 56.
    Chen K, Shi P, Teh TKH, Toh SL, Goh JC. In vitro generation of a multilayered osteochondral construct with an osteochondral interface using rabbit bone marrow stromal cells and a silk peptide‐based scaffold. J Tissue Eng Regen Med. 2016;10(4):284–93.PubMedCrossRefGoogle Scholar
  57. 57.
    Kim SH, Hur W, Kim JE, Min HJ, Kim S, Min HS, Kim BK, Kim SH, Choi TH, Jung Y. Self-assembling peptide nanofibers coupled with neuropeptide substance P for bone tissue engineering. Tissue Eng A. 2015;21(7–8):1237–46.CrossRefGoogle Scholar
  58. 58.
    MacEwan SR, Chilkoti A. Applications of elastin-like polypeptides in drug delivery. J Control Release. 2014;190:314–30. PMCID:Pmc4167344PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    He B, Ou Y, Zhou A, Chen S, Zhao W, Zhao J, Li H, Zhu Y, Zhao Z, Jiang D. Functionalized d-form self-assembling peptide hydrogels for bone regeneration. Drug Des Dev Ther. 2016;10:1379–88. PMCID:Pmc4833366CrossRefGoogle Scholar
  60. 60.
    Wang B, Sun C, Shao Z, Yang S, Che B, Wu Q, Liu J. Designer self-assembling peptide nanofiber scaffolds containing link protein N-terminal peptide induce chondrogenesis of rabbit bone marrow stem cells. Biomed Res Int. 2014;2014:421954.PubMedPubMedCentralGoogle Scholar
  61. 61.
    Kopesky PW, Byun S, Vanderploeg EJ, Kisiday JD, Frisbie DD, Grodzinsky AJ. Sustained delivery of bioactive TGF‐β1 from self‐assembling peptide hydrogels induces chondrogenesis of encapsulated bone marrow stromal cells. J Biomed Mater Res A. 2014;102(5):1275–85.PubMedCrossRefGoogle Scholar
  62. 62.
    Meng Q, Man Z, Dai L, Huang H, Zhang X, Hu X, Shao Z, Zhu J, Zhang J, Fu X, Duan X, Ao Y. A composite scaffold of MSC affinity peptide-modified demineralized bone matrix particles and chitosan hydrogel for cartilage regeneration. Sci Rep. 2015;5:17802. PMCID:Pmc4668577PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Senturk B, Mercan S, Delibasi T, Guler MO, Tekinay AB. Angiogenic peptide nanofibers improve wound healing in STZ-induced diabetic rats. ACS Biomater Sci Eng. 2016;2(7):1180–9.CrossRefGoogle Scholar
  64. 64.
    Sargeant TD, Guler MO, Oppenheimer SM, Mata A, Satcher RL, Dunand DC, Stupp SI. Hybrid bone implants: self-assembly of peptide amphiphile nanofibers within porous titanium. Biomaterials. 2008;29(2):161–71.PubMedCrossRefGoogle Scholar
  65. 65.
    Nonoyama T, Ogasawara H, Tanaka M, Higuchi M, Kinoshita T. Calcium phosphate biomineralization in peptide hydrogels for injectable bone-filling materials. Soft Matter. 2012;8(45):11531–6.CrossRefGoogle Scholar
  66. 66.
    Pountos I, Panteli M, Lampropoulos A, Jones E, Calori GM, Giannoudis PV. The role of peptides in bone healing and regeneration: a systematic review. BMC Med. 2016;14(1):103.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Ong KL, Villarraga ML, Lau E, Carreon LY, Kurtz SM, Glassman SD. Off-label use of bone morphogenetic proteins in the United States using administrative data. Spine (Phila Pa 1976). 2010;35(19):1794–800.CrossRefGoogle Scholar
  68. 68.
    Ronga M, Fagetti A, Canton G, Paiusco E, Surace MF, Cherubino P. Clinical applications of growth factors in bone injuries: experience with BMPs. Injury. 2013;44:S34–S9.PubMedCrossRefGoogle Scholar
  69. 69.
    Kim HK, Kim JH, Park DS, Park KS, Kang SS, Lee JS, Jeong MH, Yoon TR. Osteogenesis induced by a bone forming peptide from the prodomain region of BMP-7. Biomaterials. 2012;33(29):7057–63.PubMedCrossRefGoogle Scholar
  70. 70.
    Liu A, Li Y, Wang Y, Liu L, Shi H, Qiu Y. Exogenous parathyroid hormone-related peptide promotes fracture healing in Lepr(−/−) mice. Calcif Tissue Int. 2015;97(6):581–91.PubMedCrossRefGoogle Scholar
  71. 71.
    Wang AY, Tian Y, Yuan M, Zhang L, Chen JF, Xu WJ, Meng HY, Yu XM, Wang YQ, Guo QY, Lu SB, Peng J, Wang Y. Effect of cervus and cucumis peptides on osteoblast activity and fracture healing in osteoporotic bone. Evid Based Complement Alternat Med. 2014;2014:958908. PMCID:Pmc4267218PubMedPubMedCentralGoogle Scholar
  72. 72.
    Lu Y, Lee JS, Nemke B, Graf BK, Royalty K, Illgen R 3rd, Vanderby R Jr, Markel MD, Murphy WL. Coating with a modular bone morphogenetic peptide promotes healing of a bone-implant gap in an ovine model. PLoS One. 2012;7(11):e50378. PMCID:Pmc3503930PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Hashida M, Miyatake K, Okamoto Y, Fujita K, Matumoto T, Morimatsu F, Sakamoto K, Minami S. Synergistic effects of D-glucosamine and collagen peptides on healing experimental cartilage injury. Macromol Biosci. 2003;3(10):596–603.CrossRefGoogle Scholar
  74. 74.
    Zhang B, Luo Q, Kuang D, Ju Y, Song G. Mechano-growth factor E peptide promotes healing of rat injured tendon. Biotechnol Lett. 2016;38(10):1817–25.PubMedCrossRefGoogle Scholar
  75. 75.
    LeBaron RG, Athanasiou KA. Extracellular matrix cell adhesion peptides: functional applications in orthopedic materials. Tissue Eng. 2000;6(2):85–103.PubMedCrossRefGoogle Scholar
  76. 76.
    Zhang X, Gu J, Zhang Y, Tan Y, Zhou J, Zhou D. Immobilization of RGD peptide onto the surface of apatite-wollastonite ceramic for enhanced osteoblast adhesion and bone regeneration. J Wuhan Univ Technol Mater Sci Ed. 2014;29(3):626–34.CrossRefGoogle Scholar
  77. 77.
    Tatrai P, Sagi B, Szigeti A, Szepesi A, Szabo I, Bosze S, Kristof Z, Marko K, Szakacs G, Urban I, Mezo G, Uher F, Nemet K. A novel cyclic RGD-containing peptide polymer improves serum-free adhesion of adipose tissue-derived mesenchymal stem cells to bone implant surfaces. J Mater Sci Mater Med. 2013;24(2):479–88.PubMedCrossRefGoogle Scholar
  78. 78.
    Choi YJ, Lee JY, Chung CP, Park YJ. Enhanced osteogenesis by collagen-binding peptide from bone sialoprotein in vitro and in vivo. J Biomed Mater Res A. 2013;101((2):547–54.CrossRefGoogle Scholar
  79. 79.
    Barra L, Pope J, Bessette L, Haraoui B, Bykerk V. Lack of seroconversion of rheumatoid factor and anti-cyclic citrullinated peptide in patients with early inflammatory arthritis: a systematic literature review. Rheumatology (Oxford). 2011;50(2):311–6.CrossRefGoogle Scholar
  80. 80.
    Whiting PF, Smidt N, Sterne JA, Harbord R, Burton A, Burke M, Beynon R, Ben-Shlomo Y, Axford J, Dieppe P. Systematic review: accuracy of anti-citrullinated peptide antibodies for diagnosing rheumatoid arthritis. Ann Intern Med. 2010;152(7):456–64. w155-66PubMedCrossRefGoogle Scholar
  81. 81.
    Van Steenbergen H, Ajeganova S, Forslind K, Svensson B, Van Der Helm-van Mil A. The effects of rheumatoid factor and anticitrullinated peptide antibodies on bone erosions in rheumatoid arthritis. Ann Rheum Dis. 2015;74(1):e3.PubMedCrossRefGoogle Scholar
  82. 82.
    Lascelles BDX, Knazovicky D, Case B, Freire M, Innes JF, Drew AC, Gearing DP. A canine-specific anti-nerve growth factor antibody alleviates pain and improves mobility and function in dogs with degenerative joint disease-associated pain. BMC Vet Res. 2015;11(1):101.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Malfait A-M, Miller RJ. Emerging targets for the management of osteoarthritis pain. Curr Osteoporos Rep. 2016;14(6):260–8.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Du Y, Tong Y, Mei W, Jia J, Niu M, Cao W, Lou W, Li S, Li Z, Stinson WA. A truncated IL‐17RC peptide ameliorates synovitis and bone destruction of arthritic mice. Adv Healthc Mater. 2016;5(22):2911–21.PubMedCrossRefGoogle Scholar
  85. 85.
    Wang X, Yang Y, Jia H, Jia W, Miller S, Bowman B, Feng J, Zhan F. Peptide decoration of nanovehicles to achieve active targeting and pathology-responsive cellular uptake for bone metastasis chemotherapy. Biomater Sci. 2014;2(7):961–71. PMCID:Pmc4465575PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Tang B, Yong X, Xie R, Li QW, Yang SM. Vasoactive intestinal peptide receptor-based imaging and treatment of tumors (review). Int J Oncol. 2014;44(4):1023–31.PubMedCrossRefGoogle Scholar
  87. 87.
    Virgolini I, Raderer M, Kurtaran A, Angelberger P, Banyai S, Yang Q, Li S, Banyai M, Pidlich J, Niederle B, Scheithauer W, Valent P. Vasoactive intestinal peptide-receptor imaging for the localization of intestinal adenocarcinomas and endocrine tumors. N Engl J Med. 1994;331(17):1116–21.PubMedCrossRefGoogle Scholar
  88. 88.
    Wang Y, Yang J, Liu H, Wang X, Zhou Z, Huang Q, Song D, Cai X, Li L, Lin K, Xiao J, Liu P, Zhang Q, Cheng Y. Osteotropic peptide-mediated bone targeting for photothermal treatment of bone tumors. Biomaterials. 2017;114:97–105.PubMedCrossRefGoogle Scholar
  89. 89.
    Savarino L, Granchi D, Cenni E, Baldini N, Greco M, Giunti A. Systemic cross-linked N-terminal telopeptide and procollagen I C-terminal extension peptide as markers of bone turnover after total hip arthroplasty. J Bone Joint Surg Br. 2005;87(4):571–6.PubMedCrossRefGoogle Scholar
  90. 90.
    Pupaibool J, Fulnecky EJ, Swords RL Jr, Sistrunk WW, Haddow AD. Alpha-defensin-novel synovial fluid biomarker for the diagnosis of periprosthetic joint infection. Int Orthop. 2016;40(12):2447–52.PubMedCrossRefGoogle Scholar
  91. 91.
    Wu Q, Li RS, Zhao Y, Wang ZX, Tang YC, Zhang J, Liu JN, Tan XY. Vaccination with DKK1-derived peptides promotes bone formation and bone mass in an aged mouse osteoporosis model. Calcif Tissue Int. 2014;95(2):153–65.PubMedCrossRefGoogle Scholar
  92. 92.
    Nasri R, Nasri M. Marine-derived bioactive peptides as new anticoagulant agents: a review. Curr Protein Pept Sci. 2013;14(3):199–204.PubMedCrossRefGoogle Scholar
  93. 93.
    Roberts M, Bentley M, Harris J. Chemistry for peptide and protein PEGylation. Adv Drug Deliv Rev. 2012;64:116–27.CrossRefGoogle Scholar
  94. 94.
    Veronese FM. Peptide and protein PEGylation: a review of problems and solutions. Biomaterials. 2001;22(5):405–17.PubMedCrossRefGoogle Scholar
  95. 95.
    Liu Z, Tang Y, Kang T, Rao M, Li K, Wang Q, Quan C, Zhang C, Jiang Q, Shen H. Synergistic effect of HA and BMP-2 mimicking peptide on the bioactivity of HA/PMMA bone cement. Colloids Surf B Biointerfaces. 2015;131:39–46.PubMedCrossRefGoogle Scholar
  96. 96.
    Moore NM, Lin NJ, Gallant ND, Becker ML. Synergistic enhancement of human bone marrow stromal cell proliferation and osteogenic differentiation on BMP-2-derived and RGD peptide concentration gradients. Acta Biomater. 2011;7(5):2091–100.PubMedCrossRefGoogle Scholar
  97. 97.
    Renukuntla J, Vadlapudi AD, Patel A, Boddu SH, Mitra AK. Approaches for enhancing oral bioavailability of peptides and proteins. Int J Pharm. 2013;447(1–2):75–93. PMCID:Pmc3680128PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Malhaire H, Gimel J-C, Roger E, Benoît J-P, Lagarce F. How to design the surface of peptide-loaded nanoparticles for efficient oral bioavailability? Adv Drug Deliv Rev. 2016;106:320–36.PubMedCrossRefGoogle Scholar
  99. 99.
    Ron-Doitch S, Sawodny B, Kühbacher A, David MMN, Samanta A, Phopase J, Burger-Kentischer A, Griffith M, Golomb G, Rupp S. Reduced cytotoxicity and enhanced bioactivity of cationic antimicrobial peptides liposomes in cell cultures and 3D epidermis model against HSV. J Control Release. 2016;229:163–71.PubMedCrossRefGoogle Scholar
  100. 100.
    Podust VN, Sim B-C, Kothari D, Henthorn L, Gu C, C-w W, McLaughlin B, Schellenberger V. Extension of in vivo half-life of biologically active peptides via chemical conjugation to XTEN protein polymer. Protein Eng Des Sel. 2013;26(11):743–53.PubMedCrossRefGoogle Scholar
  101. 101.
    Sarahrudi K, Mousavi M, Grossschmidt K, Sela N, Konig F, Vecsei V, Aharinejad S. Combination of anorganic bovine-derived hydroxyapatite with binding peptide does not enhance bone healing in a critical-size defect in a rabbit model. J Orthop Res. 2008;26(6):759–63.PubMedCrossRefGoogle Scholar
  102. 102.
    He H, Sun L, Ye J, Liu E, Chen S, Liang Q, Shin MC, Yang VC. Enzyme-triggered, cell penetrating peptide-mediated delivery of anti-tumor agents. J Control Release. 2016;240:67–76.PubMedCrossRefGoogle Scholar
  103. 103.
    Budhram A, Chu R, Rusta-Sallehy S, Ioannidis G, Denburg J, Adachi J, Haaland D. Anti-cyclic citrullinated peptide antibody as a marker of erosive arthritis in patients with systemic lupus erythematosus: a systematic review and meta-analysis. Lupus. 2014;23(11):1156–63.PubMedCrossRefGoogle Scholar
  104. 104.
    Kintzing JR, Cochran JR. Engineered knottin peptides as diagnostics, therapeutics, and drug delivery vehicles. Curr Opin Chem Biol. 2016;34:143–50.PubMedCrossRefGoogle Scholar
  105. 105.
    Deng M, Zhang B, Wang K, Liu F, Xiao H, Zhao J, Liu P, Li Y, Lin F, Wang Y. Mechano growth factor E peptide promotes osteoblasts proliferation and bone-defect healing in rabbits. Int Orthop. 2011;35(7):1099–106.PubMedCrossRefGoogle Scholar
  106. 106.
    Sugamori Y, Mise‐Omata S, Maeda C, Aoki S, Tabata Y, Murali R, Yasuda H, Udagawa N, Suzuki H, Honma M. Peptide drugs accelerate BMP‐2‐induced calvarial bone regeneration and stimulate osteoblast differentiation through mTORC1 signaling. BioEssays. 2016;38(8):717–25.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Uehara T, Mise-Omata S, Matsui M, Tabata Y, Murali R, Miyashin M, Aoki K. Delivery of RANKL-binding peptide OP3-4 promotes BMP-2-induced maxillary bone regeneration. J Dent Res. 2016;95(6):665–72.PubMedCrossRefGoogle Scholar
  108. 108.
    Zhao Z, Shao L, Zhao H, Zhong Z, Liu J, Hao C. Osteogenic growth peptide accelerates bone healing during distraction osteogenesis in rabbit tibia. J Int Med Res. 2011;39(2):456–63.PubMedCrossRefGoogle Scholar
  109. 109.
    Whitfield JF, Motley P, Willick GE. Parathyroid hormone, its fragments and their analogs for the treatment of osteoporosis. Treat Endocrinol. 2002;1(3):175–90.PubMedCrossRefGoogle Scholar
  110. 110.
    Amso Z, Kowalczyk R, Watson M, Park Y-E, Callon KE, Musson DS, Cornish J, Brimble MA. Structure activity relationship study on the peptide hormone preptin, a novel bone-anabolic agent for the treatment of osteoporosis. Org Biomol Chem. 2016;14(39):9225–38.PubMedCrossRefGoogle Scholar
  111. 111.
    Hou T, Li Z, Luo F, Xie Z, Wu X, Xing J, Dong S, Xu JA. composite demineralized bone matrix–self assembling peptide scaffold for enhancing cell and growth factor activity in bone marrow. Biomaterials. 2014;35(22):5689–99.PubMedCrossRefGoogle Scholar
  112. 112.
    Kim JA, Choi Y-A, Yun H-S, Bae YC, Shin H-I, Park EK. Extracellular calcium-binding peptide-modified ceramics stimulate regeneration of calvarial bone defects. Tissue Eng Regen Med. 2016;13(1):57–65.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  • Derek E. Andreini
    • 1
  • Zachary J. Werner
    • 1
  • Christopher D. Bell
    • 1
  • Malcolm Xing
    • 2
    • 3
  • Bingyun Li
    • 1
    • 4
  1. 1.Department of Orthopaedics, School of MedicineWest Virginia UniversityMorgantownUSA
  2. 2.Department of Mechanical EngineeringUniversity of ManitobaWinnipegCanada
  3. 3.The Children’s Hospital Research Institute of ManitobaWinnipegCanada
  4. 4.Mary Babb Randolph Cancer CenterMorgantownUSA

Personalised recommendations