Orthopedic Nanomaterials

  • Tolou Shokuhfar
  • Emre Firlar
  • Mostafa Rezazadeh Shirdar
  • Mohammad Mahdi Taheri
Chapter

Abstract

This chapter is an introduction to nanotechnology and nanomaterials with emphasis on orthopedic applications. It covers different types of nanomaterials used in orthopedic applications including metals, polymers, ceramics, carbon materials and composites and their main structures and features. In addition, the significance of the nanomaterial surface and its toxicological effect on the success rate of implantation were discussed. This chapter also covers current applications of nanomaterials in bone tissue engineering. Finally, it presents characterizations of nanomaterials and their interactions with biological systems using advanced nanotechnology tools.

Keywords

Nanotechnology Nanomaterial Orthopedic implant Nano-size Surface Toxicity Bone Characterization Atomic force microscopy FTIR fluorescent microscopy 

Notes

Acknowledgement

The authors are grateful to the National Science Foundation, CAREER award DMR-1564950 for providing partial financial support.

References

  1. 1.
    Tasker LH, Sparey-Taylor GJ, Nokes LDM. Applications of nanotechnology in orthopaedics. Clin Orthop Relat Res. 2007;456:243–9.PubMedCrossRefGoogle Scholar
  2. 2.
    Di Sia P. Nanotechnology among innovation, health and risks. Proc Soc Behav Sci. 2017;237:1076–80.CrossRefGoogle Scholar
  3. 3.
    Toumey C. Plenty of room, plenty of history. Nat Nanotechnol. 2009;4(12):783–4.PubMedCrossRefGoogle Scholar
  4. 4.
    Mauro JC, Ellison AJ, Pye LD. Glass: the nanotechnology connection. Int J Appl Glas Sci. 2013;4(2):64–75.CrossRefGoogle Scholar
  5. 5.
    Sakamoto JH, van de Ven AL, Godin B, Blanco E, Serda RE, Grattoni A, Ziemys A, Bouamrani A, Hu T, Ranganathan SI, De Rosa E, Martinez JO, Smid CA, Buchanan RM, Lee S-Y, Srinivasan S, Landry M, Meyn A, Tasciotti E, Liu X, Decuzzi P, Ferrari M. Enabling individualized therapy through nanotechnology. Pharmacol Res. 2010;62(2):57–89.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Mirza AZ, Siddiqui FA. Nanomedicine and drug delivery: a mini review. Int Nano Lett. 2014;4(1):94.CrossRefGoogle Scholar
  7. 7.
    Chistiakov DA. Endogenous and exogenous stem cells: a role in lung repair and use in airway tissue engineering and transplantation. J Biomed Sci. 2010;17(1):92.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Wang M, Abbineni G, Clevenger A, Mao C, Xu S. Upconversion nanoparticles: synthesis, surface modification and biological applications. Nanomed Nanotechnol Biol Med. 2011;7(6):710–29.CrossRefGoogle Scholar
  9. 9.
    Leonida MD, Kumar I. Nanomaterials, scaffolds, and skin tissue regeneration. Cham: Springer International Publishing; 2016. p. 103–16.Google Scholar
  10. 10.
    Parchi PD, Vittorio O, Andreani L, Piolanti N, Cirillo G, Iemma F, Hampel S, Lisanti M. How nanotechnology can really improve the future of orthopedic implants and scaffolds for bone and cartilage defects. J. Nanomed Biotherapeutic Discov. 2013;3(2):114.  https://doi.org/10.4172/2155-983X.1000114.Google Scholar
  11. 11.
    Zhang L, Webster TJ. Nanotechnology and nanomaterials: Promises for improved tissue regeneration. Nano Today. 2009;4(1):66–80.CrossRefGoogle Scholar
  12. 12.
    AAOS. Information about musculoskeletal conditions. Rosemont, IL: AAOS; 2013. p. 26.Google Scholar
  13. 13.
    Catledge SA, Thomas V, Vohra YK. Nanostructured diamond coatings for orthopaedic applications. Woodhead Publ Ser Biomater. 2013;2013:105–50.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Catledge SA, Fries MD, Vohra YK, Lacefield WR, Lemons JE, Woodard S, Venugopalan R. Nanostructured ceramics for biomedical implants. J Nanosci Nanotechnol. 2002;2(3–4):293–312.PubMedCrossRefGoogle Scholar
  15. 15.
    Taheri MM, Abdul Kadir MR, Ahmad Shafie NK, Shokuhfar T, Assadian M, Rezazadeh Shirdar M. Green synthesis of silver nanoneedles using shallot and apricot tree gum. Trans Nonferrous Met Soc China. 2015;25(10):3286–90.CrossRefGoogle Scholar
  16. 16.
    Taheri MM, Abdul Kadir MR, Shokuhfar T, Hamlekhan A, Shirdar MR, Naghizadeh F. Fluoridated hydroxyapatite nanorods as novel fillers for improving mechanical properties of dental composite: synthesis and application. Mater Des. 2015;82:119–25.CrossRefGoogle Scholar
  17. 17.
    Christenson EM, Anseth KS, van den Beucken JJJP, Chan CK, Ercan B, Jansen JA, Laurencin CT, Li W-J, Murugan R, Nair LS, Ramakrishna S, Tuan RS, Webster TJ, Mikos AG. Nanobiomaterial applications in orthopedics. J Orthop Res. 2007;25(1):11–22.PubMedCrossRefGoogle Scholar
  18. 18.
    Sato M, Webster TJ. Nanobiotechnology: implications for the future of nanotechnology in orthopedic applications. Expert Rev Med Devices. 2004;1(1):105–14.PubMedCrossRefGoogle Scholar
  19. 19.
    Sato M, Webster TJ. Orthopedic tissue engineering using nanomaterials. In Nanotechnologies for the life sciences. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2007.Google Scholar
  20. 20.
    Balasundaram G, Webster TJ, Akasaka T, Wroblewski BM, Ingham E, Kamali A, Stone MH, Ingham E, Montanaro L, Baquey CH. A perspective on nanophase materials for orthopedic implant applications. J Mater Chem. 2006;16(38):3737.CrossRefGoogle Scholar
  21. 21.
    Marot D, Knezevic M, Novakovic G. Bone tissue engineering with human stem cells. Stem Cell Res Ther. 2010;1(2):10.PubMedCentralCrossRefGoogle Scholar
  22. 22.
    Boccaccini AR, Keim S, Ma R, Li Y, Zhitomirsky I. Electrophoretic deposition of biomaterials. J R Soc Interface. 2010;7(Suppl_5):S581–613.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Yang L, Zhang L, Webster TJ. Carbon nanostructures for orthopedic medical applications. Nanomedicine. 2011;6(7):1231–44.PubMedCrossRefGoogle Scholar
  24. 24.
    Hodgkinson T, Yuan X-F, Bayat A. Adult stem cells in tissue engineering. Expert Rev Med Devices. 2009;6(6):621–40.PubMedCrossRefGoogle Scholar
  25. 25.
    Chun YW, Webster TJ. The role of nanomedicine in growing tissues. Ann Biomed Eng. 2009;37(10):2034–47.PubMedCrossRefGoogle Scholar
  26. 26.
    Simchi A, Mazaheri M, Eslahi N, Ordikhani F, Tamjid E. Nanomedicine applications in orthopedic medicine: state of the art. Int J Nanomedicine. 2015;10:6039.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Shirwaiker RA, Samberg ME, Cohen PH, Wysk RA, Monteiro-Riviere NA. Nanomaterials and synergistic low-intensity direct current (LIDC) stimulation technology for orthopedic implantable medical devices. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2013;5(3):191–204.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Khang D, Carpenter J, Chun YW, Pareta R, Webster TJ. Nanotechnology for regenerative medicine. Biomed Microdevices. 2010;12(4):575–87.PubMedCrossRefGoogle Scholar
  29. 29.
    Hench LL, Polak JM. Third-generation biomedical materials. Science. 2002;295(5557):1014–7.PubMedCrossRefGoogle Scholar
  30. 30.
    Liang J, Song R, Huang Q, Yang Y, Lin L, Zhang Y, Jiang P, Duan H, Dong X, Lin C. Electrochemical construction of a bio-inspired micro/nano-textured structure with cell-sized microhole arrays on biomedical titanium to enhance bioactivity. Electrochim Acta. 2015;174:1149–59.CrossRefGoogle Scholar
  31. 31.
    Mishnaevsky L, Levashov E, Valiev RZ, Segurado J, Sabirov I, Enikeev N, Prokoshkin S, Solov’yov AV, Korotitskiy A, Gutmanas E, Gotman I, Rabkin E, Psakh’e S, Dluhoš L, Seefeldt M, Smolin A. Nanostructured titanium-based materials for medical implants: modeling and development. Mater Sci Eng R Rep. 2014;81:1–19.CrossRefGoogle Scholar
  32. 32.
    Yamanaka K, Mori M, Chiba A. Nanoarchitectured Co–Cr–Mo orthopedic implant alloys: nitrogen-enhanced nanostructural evolution and its effect on phase stability. Acta Biomater. 2013;9(4):6259–67.PubMedCrossRefGoogle Scholar
  33. 33.
    Pauksch L, Hartmann S, Rohnke M, Szalay G, Alt V, Schnettler R, Lips KS. Biocompatibility of silver nanoparticles and silver ions in primary human mesenchymal stem cells and osteoblasts. Acta Biomater. 2014;10(1):439–49.PubMedCrossRefGoogle Scholar
  34. 34.
    Krawczynska AT, Gloc M, Lublinska K. Intergranular corrosion resistance of nanostructured austenitic stainless steel. J Mater Sci. 2013;48(13):4517–23.CrossRefGoogle Scholar
  35. 35.
    Mohandas G, Oskolkov N, McMahon MT, Walczak P, Janowski M. Porous tantalum and tantalum oxide nanoparticles for regenerative medicine. Acta Neurobiol Exp (Wars). 2014;74(2):188–96.Google Scholar
  36. 36.
    Schiavi J, Keller L, Morand D-N, De Isla N, Huck O, Lutz JC, Mainard D, Schwinté P, Benkirane-Jessel N. Active implant combining human stem cell microtissues and growth factors for bone-regenerative nanomedicine. Nanomedicine. 2015;10(5):753–63.PubMedCrossRefGoogle Scholar
  37. 37.
    Levengood SL, Zhang M. Chitosan-based scaffolds for bone tissue engineering. J Mater Chem B Mater Biol Med. 2014;2(21):3161–84.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Lee P, Tran K, Chang W, Shelke NB, Kumbar SG, Yu X. Influence of chondroitin sulfate and hyaluronic acid presence in nanofibers and its alignment on the bone marrow stromal cells: cartilage regeneration. J Biomed Nanotechnol. 2014;10(8):1469–79.PubMedCrossRefGoogle Scholar
  39. 39.
    Zhang W, Zhu C, Ye D, Xu L, Zhang X, Wu Q, Zhang X, Kaplan DL, Jiang X. Porous silk scaffolds for delivery of growth factors and stem cells to enhance bone regeneration. PLoS One. 2014;9(7):e102371.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Gentile P, Chiono V, Carmagnola I, Hatton P. An overview of poly(lactic-co-glycolic) acid (PLGA)-based biomaterials for bone tissue engineering. Int J Mol Sci. 2014;15(3):3640–59.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Winkins S, Kamath M, Dhanasekaran M, Ahmed S. Polycaprolactone scaffold engineered for sustained release of resveratrol: therapeutic enhancement in bone tissue engineering. Int J Nanomedicine. 2013;9:183.CrossRefGoogle Scholar
  42. 42.
    Xing Z-C, Han S-J, Shin Y-S, Koo T-H, Moon S, Jeong Y, Kang I-K. Enhanced osteoblast responses to poly(methyl methacrylate)/hydroxyapatite electrospun nanocomposites for bone tissue engineering. J Biomater Sci Polym Ed. 2012;24(1):61–76.PubMedGoogle Scholar
  43. 43.
    Lopes MS, Jardini AL, Filho RM. Poly (lactic acid) production for tissue engineering applications. Proc Eng. 2012;42:1402–13.CrossRefGoogle Scholar
  44. 44.
    Evans NT, Torstrick FB, Lee CSD, Dupont KM, Safranski DL, Chang WA, Macedo AE, Lin ASP, Boothby JM, Whittingslow DC, Carson RA, Guldberg RE, Gall K. High-strength, surface-porous polyether-ether-ketone for load-bearing orthopedic implants. Acta Biomater. 2015;13:159–67.PubMedCrossRefGoogle Scholar
  45. 45.
    Wang P, Zhao L, Liu J, Weir MD, Zhou X, Xu HHK. Bone tissue engineering via nanostructured calcium phosphate biomaterials and stem cells. Bone Res. 2014;2:14017.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Zhou C, Deng C, Chen X, Zhao X, Chen Y, Fan Y, Zhang X. Mechanical and biological properties of the micro−/nano-grain functionally graded hydroxyapatite bioceramics for bone tissue engineering. J Mech Behav Biomed Mater. 2015;48:1–11.PubMedCrossRefGoogle Scholar
  47. 47.
    Tamjid E, Bagheri R, Vossoughi M, Simchi A. Effect of particle size on the in vitro bioactivity, hydrophilicity and mechanical properties of bioactive glass-reinforced polycaprolactone composites. Mater Sci Eng C. 2011;31(7):1526–33.CrossRefGoogle Scholar
  48. 48.
    Price RL, Haberstroh KM, Webster TJ. Enhanced functions of osteoblasts on nanostructured surfaces of carbon and alumina. Med Biol Eng Comput. 2003;41(3):372–5.PubMedCrossRefGoogle Scholar
  49. 49.
    Newman P, Minett A, Ellis-Behnke R, Zreiqat H. Carbon nanotubes: their potential and pitfalls for bone tissue regeneration and engineering. Nanomed Nanotechnol Biol Med. 2013;9(8):1139–58.CrossRefGoogle Scholar
  50. 50.
    Zhao C, Lu X, Zanden C, Liu J. The promising application of graphene oxide as coating materials in orthopedic implants: preparation, characterization and cell behavior. Biomed Mater. 2015;10(1):15019.CrossRefGoogle Scholar
  51. 51.
    Mansoorianfar M, Shokrgozar MA, Mehrjoo M, Tamjid E, Simchi A. Nanodiamonds for surface engineering of orthopedic implants: Enhanced biocompatibility in human osteosarcoma cell culture. Diam Relat Mater. 2013;40:107–14.CrossRefGoogle Scholar
  52. 52.
    Hickey DJ, Ercan B, Sun L, Webster TJ. Adding MgO nanoparticles to hydroxyapatite–PLLA nanocomposites for improved bone tissue engineering applications. Acta Biomater. 2015;14:175–84.PubMedCrossRefGoogle Scholar
  53. 53.
    Liao CZ, Li K, Wong HM, Tong WY, Yeung KWK, Tjong SC. Novel polypropylene biocomposites reinforced with carbon nanotubes and hydroxyapatite nanorods for bone replacements. Mater Sci Eng C. 2013;33(3):1380–8.CrossRefGoogle Scholar
  54. 54.
    Pishbin F, Mouriño V, Gilchrist JB, McComb DW, Kreppel S, Salih V, Ryan MP, Boccaccini AR. Single-step electrochemical deposition of antimicrobial orthopaedic coatings based on a bioactive glass/chitosan/nano-silver composite system. Acta Biomater. 2013;9(7):7469–79.PubMedCrossRefGoogle Scholar
  55. 55.
    Longmire MR, Ogawa M, Choyke PL, Kobayashi H. Biologically optimized nanosized molecules and particles: more than just size. Bioconjug Chem. 2011;22(6):993–1000.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Katz D, Kany J, Valenti P, Sauzières P, Gleyze P, El Kholti K. New design of a cementless glenoid component in unconstrained shoulder arthroplasty: a prospective medium-term analysis of 143 cases. Eur J Orthop Surg Traumatol. 2013;23(1):27–34.PubMedCrossRefGoogle Scholar
  57. 57.
    Cobelli N, Scharf B, Crisi GM, Hardin J, Santambrogio L. Mediators of the inflammatory response to joint replacement devices. Nat Rev Rheumatol. 2011;7(10):600–8.PubMedCrossRefGoogle Scholar
  58. 58.
    Izman S, Rafiq M, Anwar M, Nazim EM, Rosliza R, Shah A, Hass MA. Surface modification techniques for biomedical grade of titanium alloys: oxidation, carburization and ion implantation processes. In: Nurul Amin AKM, editor. Titanium alloys—towards achieving enhanced properties for diversified applications. London: InTech; 2012.Google Scholar
  59. 59.
    Wang Q, Yang X, Liu D, Zhao J. Fabrication, characterization and photocatalytic properties of Ag nanoparticles modified TiO2 NTs. J Alloys Compd. 2012;527:106–11.CrossRefGoogle Scholar
  60. 60.
    Lin L, Wang H, Ni M, Rui Y, Cheng T-Y, Cheng C-K, Pan X, Li G, Lin C. Enhanced osteointegration of medical titanium implant with surface modifications in micro/nanoscale structures. J Orthop Transl. 2014;2(1):35–42.Google Scholar
  61. 61.
    Kasemo B, Gold J. Implant surfaces and interface processes. Adv Dent Res. 1999;13(1):8–20.PubMedCrossRefGoogle Scholar
  62. 62.
    Bauer S, Schmuki P, von der Mark K, Park J. Engineering biocompatible implant surfaces. Prog Mater Sci. 2013;58(3):261–326.CrossRefGoogle Scholar
  63. 63.
    Xia L, Feng B, Wang P, Ding S, Liu Z, Zhou J, Yu R. In vitro and in vivo studies of surface-structured implants for bone formation. Int J Nanomedicine. 2012;7:4873–81.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Mazaheri M, Eslahi N, Ordikhani F, Tamjid E, Simchi A. Nanomedicine applications in orthopedic medicine: state of the art. Int J Nanomedicine. 2015;10:6039–53.PubMedPubMedCentralGoogle Scholar
  65. 65.
    Safonov V, Zykova A, Smolik J, Rogowska R, Lukyanchenko V, Kolesnikov D. Modification of implant material surface properties by means of oxide nano-structured coatings deposition. Appl Surf Sci. 2014;310:174–9.CrossRefGoogle Scholar
  66. 66.
    Rezazadeh Shirdar M, Sudin I, Taheri MM, Keyvanfar A, Yusop MZM, kadir MRA. A novel hydroxyapatite composite reinforced with titanium nanotubes coated on Co–Cr-based alloy. Vacuum. 2015;122:82–9.CrossRefGoogle Scholar
  67. 67.
    Rezazadeh Shirdar M, Taheri MM, Moradifard H, Keyvanfar A, Shafaghat A, Shokuhfar T, Izman S. Hydroxyapatite–titania nanotube composite as a coating layer on Co–Cr-based implants: Mechanical and electrochemical optimization. Ceram Int. 2016;42(6):6942–54.CrossRefGoogle Scholar
  68. 68.
    Breme H, Biehl V, Reger N, Gawalt E. Chapter 1a Metallic biomaterials: introduction. In: Black J, Hastings G, editors. Handbook of biomaterial properties. New York, NY: Springer New York; 2016. p. 151–8.Google Scholar
  69. 69.
    Smith GD, Knutsen G, Richardson JB. A clinical review of cartilage repair techniques. J Bone Joint Surg Br. 2005;87B(4):445–9.CrossRefGoogle Scholar
  70. 70.
    Mafi P, Hindocha S, Mafi R, Khan WS. Evaluation of biological protein-based collagen scaffolds in cartilage and musculoskeletal tissue engineering—a systematic review of the literature. Curr Stem Cell Res Ther. 2012;7(4):302–9.PubMedCrossRefGoogle Scholar
  71. 71.
    Cartmell S. Controlled release scaffolds for bone tissue engineering. J Pharm Sci. 2009;98(2):430–41.PubMedCrossRefGoogle Scholar
  72. 72.
    Li Z, Kawashita M. Current progress in inorganic artificial biomaterials. J Artif Organs. 2011;14(3):163–70.PubMedCrossRefGoogle Scholar
  73. 73.
    Ray PC, Yu H, Fu PP. Toxicity and environmental risks of nanomaterials: challenges and future needs. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev. 2009;27(1):1–35.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Majestic BJ, Erdakos GB, Lewandowski M, Oliver KD, Willis RD, Kleindienst TE, Bhave PV. A review of selected engineered nanoparticles in the atmosphere: sources, transformations, and techniques for sampling and analysis. Int J Occup Environ Health. 2010;16(4):488–507.PubMedCrossRefGoogle Scholar
  75. 75.
    Bakand S, Hayes A, Dechsakulthorn F. Nanoparticles: a review of particle toxicology following inhalation exposure. Inhal Toxicol. 2012;24(2):125–35.PubMedCrossRefGoogle Scholar
  76. 76.
    Madl AK, Kovochich M, Liong M, Finley BL, Paustenbach DJ, Oberdörster G. Toxicology of wear particles of cobalt-chromium alloy metal-on-metal hip implants. Part II: importance of physicochemical properties and dose in animal and in vitro studies as a basis for risk assessment. Nanomed Nanotechnol Biol Med. 2015;11(5):1285–98.CrossRefGoogle Scholar
  77. 77.
    Webster TJ, Ahn ES. Nanostructured biomaterials for tissue engineering bone. Adv Biochem Eng Biotechnol. 2007;103:275–308.PubMedGoogle Scholar
  78. 78.
    Cheng L-C, Jiang X, Wang J, Chen C, Liu R-S. Nano-bio effects: interaction of nanomaterials with cells. Nanoscale. 2013;5(9):3547.PubMedCrossRefGoogle Scholar
  79. 79.
    Fan AM, Alexeeff G. Nanotechnology and nanomaterials: toxicology, risk assessment, and regulations. J Nanosci Nanotechnol. 2010;10(12):8646–57.PubMedCrossRefGoogle Scholar
  80. 80.
    Fischer HC, Chan WC. Nanotoxicity: the growing need for in vivo study. Curr Opin Biotechnol. 2007;18(6):565–71.PubMedCrossRefGoogle Scholar
  81. 81.
    Ribeiro AR, Gemini-Piperni S, Travassos R, Lemgruber L, C Silva R, Rossi AL, Farina M, Anselme K, Shokuhfar T, Shahbazian-Yassar R, Borojevic R, Rocha LA, Werckmann J, Granjeiro JM. Trojan-like internalization of anatase titanium dioxide nanoparticles by human osteoblast cells. Sci Rep. 2016;6:23615.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Goldstein J, Newbury D, Joy DC, Michael J, Ritchie NWM, Scott JH. Scanning electron microscopy and X-ray microanalysis. New York: Springer; 2017.Google Scholar
  83. 83.
    Bhosle S, Patel S, Taheril MM, Sukotjo C, Shokuhfar T. Electrochemical anodisation of Ti–15Zr implant: effect of different voltages and times. Surf Innov. 2017;5(1):82–9.CrossRefGoogle Scholar
  84. 84.
    Nelson M, Balasundaram G, Webster TJ. Increased osteoblast adhesion on nanoparticulate crystalline hydroxyapatite functionalized with KRSR. Int J Nanomedicine. 2006;1(3):339–49.PubMedPubMedCentralGoogle Scholar
  85. 85.
    Alves SA, Patel SB, Sukotjo C, Mathew MT, Filho PN, Celis J-P, Rocha LA, Shokuhfar T. Synthesis of calcium-phosphorous doped TiO2 nanotubes by anodization and reverse polarization: a promising strategy for an efficient biofunctional implant surface. Appl Surf Sci. 2017;399:682–701.CrossRefGoogle Scholar
  86. 86.
    Wang M. Bioactive materials and processing. In: Biomaterials and tissue engineering. Heidelberg: Springer; 2004. p. 1–87.Google Scholar
  87. 87.
    Bates M, Huang B, Dempsey GT, Zhuang X. S-Multicolor super-resolution imaging with photo-switchable fluorescent probes. Science. 2007;317(5845):1749–53.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Lippincott-Schwartz J, Snapp E, Kenworthy A. Studying protein dynamics in living cells. Nat Rev Mol Cell Biol. 2001;2(6):444–56.PubMedCrossRefGoogle Scholar
  89. 89.
    Park MR, Banks MK, Applegate B, Webster TJ. Influence of nanophase titania topography on bacterial attachment and metabolism. Int J Nanomedicine. 2008;3(4):497–504.PubMedPubMedCentralGoogle Scholar
  90. 90.
    Williams DB, Carter CB. Transmission electron microscopy: a textbook for materials science. Boston, MA: Springer US; 2009.CrossRefGoogle Scholar
  91. 91.
    Evans JE, Jungjohann KL, Browning ND, Arslan I. Controlled growth of nanoparticles from solution with in situ liquid transmission electron microscopy. Nano Lett. 2011;11(7):2809–13.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Wang C, Qiao Q, Shokuhfar T, Klie RF. High-resolution electron microscopy and spectroscopy of ferritin in biocompatible graphene liquid cells and graphene sandwiches. Adv Mater. 2014;26(21):3410–4.PubMedCrossRefGoogle Scholar
  93. 93.
    Mandelkow E, Mandelkow E, Milligan RA. Microtubule dynamics and microtubule caps: a time-resolved cryo- electron microscopy study. J Cell Biol. 1991;114(5):977–91.PubMedCrossRefGoogle Scholar
  94. 94.
    Dalla Pria P. Evolution and new application of the alumina ceramics in joint replacement. Eur J Orthop Surg Traumatol. 2007;17(3):253–6.CrossRefGoogle Scholar
  95. 95.
    Firlar E, Çınar S, Kashyap S, Akinc M, Prozorov T. Direct visualization of the hydration layer on alumina nanoparticles with the fluid cell STEM in situ. Sci Rep. 2015;5:9830.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Grandfield K, Palmquist A, Engqvist H. High-resolution three-dimensional probes of biomaterials and their interfaces. Philos Trans R Soc A Math Phys Eng Sci. 2012;370:1337–51.CrossRefGoogle Scholar
  97. 97.
    Nelson SA. X-ray crystallography. Sci Am. 2010;219(1):1–6.Google Scholar
  98. 98.
    Feng B, Weng J, Yang BC, Qu SX, Zhang XD. Characterization of surface oxide films on titanium and adhesion of osteoblast. Biomaterials. 2003;24(25):4663–70.PubMedCrossRefGoogle Scholar
  99. 99.
    Eslami N, Mahmoodian R, Hamdi M, Khatir NM, Herliansyah MK, Rafieerad AR. Study the synthesis, characterization and immersion of dense and porous bovine hydroxyapatite structures in Hank’s balanced salt solution. JOM. 2017;69(4):691–8.CrossRefGoogle Scholar
  100. 100.
    Anselme K, Bigerelle M, Noel B, Dufresne E, Judas D, Iost A, Hardouin P. Qualitative and quantitative study of human osteoblast adhesion on materials with various surface roughnesses. J Biomed Mater Res. 2000;49(2):155–66.PubMedCrossRefGoogle Scholar
  101. 101.
    Kuo MC, Yen SK. The process of electrochemical deposited hydroxyapatite coatings on biomedical titanium at room temperature. Mater Sci Eng C. 2002;20(1–2):153–60.CrossRefGoogle Scholar
  102. 102.
    Webster TJ, Massa-Schlueter EA, Smith JL, Slamovich EB. Osteoblast response to hydroxyapatite doped with divalent and trivalent cations. Biomaterials. 2004;25(11):2111–21.PubMedCrossRefGoogle Scholar
  103. 103.
    Razavi M, Fathi M, Savabi O, Vashaee D, Tayebi L. In vitro study of nanostructured diopside coating on Mg alloy orthopedic implants. Mater Sci Eng C. 2014;41:168–77.CrossRefGoogle Scholar
  104. 104.
    Ganzoury MA, Allam NK, Nicolet T, All C. Introduction to fourier transform infrared spectrometry. Renew Sust Energ Rev. 2015;50:1–8.CrossRefGoogle Scholar
  105. 105.
    Cao G, Wang L, Fu Z, Hu J, Guan S, Zhang C, Wang L, Zhu S. Chemically anchoring of TiO2 coating on OH-terminated Mg 3(PO3)2 surface and its influence on the in vitro degradation resistance of Mg-Zn-Ca alloy. Appl Surf Sci. 2014;308:38–42.CrossRefGoogle Scholar
  106. 106.
    Ambre A, Katti KS, Katti DR. In situ mineralized hydroxyapatite on amino acid modified nanoclays as novel bone biomaterials. Mater Sci Eng C. 2011;31(5):1017–29.CrossRefGoogle Scholar
  107. 107.
    Yazdimamaghani M, Razavi M, Vashaee D, Tayebi L. Development and degradation behavior of magnesium scaffolds coated with polycaprolactone for bone tissue engineering. Mater Lett. 2014;132:106–10.CrossRefGoogle Scholar
  108. 108.
    Cordero-Arias L, Boccaccini AR, Virtanen S. Electrochemical behavior of nanostructured TiO2/alginate composite coating on magnesium alloy AZ91D via electrophoretic deposition. Surf Coat Technol. 2015;265:212–7.CrossRefGoogle Scholar
  109. 109.
    Shi J, Dong LL, He F, Zhao S, Yang GL. Osteoblast responses to thin nanohydroxyapatite coated on roughened titanium surfaces deposited by an electrochemical process. Oral Surg Oral Med Oral Pathol Oral Radiol. 2013;116(5):e311–6.PubMedCrossRefGoogle Scholar
  110. 110.
    Killion J a, Geever LM, Devine DM, Higginbotham CL. Fabrication and in vitro biological evaluation of photopolymerisable hydroxyapatite hydrogel composites for bone regeneration. J Biomater Appl. 2014;28(8):1274–83.PubMedCrossRefGoogle Scholar
  111. 111.
    Rojaee R, Fathi M, Raeissi K, Taherian M. Electrophoretic deposition of bioactive glass nanopowders on magnesium based alloy for biomedical applications. Ceram Int. 2014;40(6):7879–88.CrossRefGoogle Scholar
  112. 112.
    Deeken CR, Bachman SL, Ramshaw BJ, Grant SA. Characterization of bionanocomposite scaffolds comprised of mercaptoethylamine-functionalized gold nanoparticles crosslinked to acellular porcine tissue. J Mater Sci Mater Med. 2012;23(2):537–46.PubMedCrossRefGoogle Scholar
  113. 113.
    Cerruti M, Sahai N. Silicate biomaterials for orthopaedic and dental implants. Rev Miner Geochem. 2006;64(1):283–313.CrossRefGoogle Scholar
  114. 114.
    Bertoluzza A, Fagnano C, Monti P, Simoni R, Tinti A, Tosi MR, Caramazza R. Raman spectroscopy in the study of biocompatibility. Clin Mater. 1992;9(1):49–68.PubMedCrossRefGoogle Scholar
  115. 115.
    Greer AIM, Lim TS, Brydone AS, Gadegaard N. Mechanical compatibility of sol-gel annealing with titanium for orthopaedic prostheses. J Mater Sci Mater Med. 2016;27(1):1–6.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  • Tolou Shokuhfar
    • 1
    • 2
  • Emre Firlar
    • 2
    • 3
  • Mostafa Rezazadeh Shirdar
    • 2
  • Mohammad Mahdi Taheri
    • 2
  1. 1.Department of DentistryUniversity of Illinois at ChicagoChicagoUSA
  2. 2.Department of BioengineeringUniversity of Illinois at ChicagoChicagoUSA
  3. 3.Department of Mechanical and Industrial EngineeringUniversity of Illinois at ChicagoChicagoUSA

Personalised recommendations