Advertisement

Orbital Formal Rigidity for Germs of Holomorphic and Real Analytic Vector Fields

  • Jessica Angélica Jaurez-Rosas
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 222)

Abstract

This survey paper is focused on discussing the main facts from the (orbital) formal rigidity phenomenon for germs of holomorphic and real analytic vector fields in the complex and real planes, exploring their similar and different properties.

Keywords

Holomorphic vector fields Real analytic vector fields Orbital formal rigidity 

References

  1. 1.
    Arnold, V.I.: Geometrical Methods in the Theory of Ordinary Differential Equations. Springer, New York (1983)CrossRefzbMATHGoogle Scholar
  2. 2.
    Arnold, V.I., Gusein-Zade, S.M., Varchenko, A.N.: Singularities of Differentiable Maps, Vol. I. The Classification of Critical Points, Caustics and Wave Fronts. Birkhäuser Boston Inc, Boston (1985)zbMATHGoogle Scholar
  3. 3.
    Brjuno, A.D.: Analytic form of differential equations. I, II, (Russian) Trudy Moskov. Mat. Obshch. 25, 119–262 (1971); 26, 199–239 (1972). English translation: Trans. Moscow Math. Soc. 25 (1971); 26 (1972)Google Scholar
  4. 4.
    Cerveau, D., Moussu, R.: Groups d’automorphismes de \((C, 0)\) et équations différentielles \(y \, d y + \ldots = 0\). Bull. Soc. Math. Fr. 116, 459–488 (1988)CrossRefzbMATHGoogle Scholar
  5. 5.
    Dulac, H.: Recherches sur les points singuliers des équations différ-entielles. Journal de l’École Polytechnique 2(9), 1–125 (1904)Google Scholar
  6. 6.
    Écalle, J.: Théorie itérative, Introduction à la théorie des invariants holomorphes. J. Math. Pures et Appl. 54, 183–258 (1975)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Écalle, J.: Les fonctions résurgentes, Tome I, II, Orsay: Publications Mathématiques d’Orsay 81, 5. Université de Paris-Sud, Département de Mathématique (1981)Google Scholar
  8. 8.
    Elizarov, P.M., Ilyashenko, Yu S.: Remarks on the orbital analytic classification of germs of vector fields. Math. USSR Sbornik 49(1), 111–124 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Elizarov, P.M., Ilyashenko, Yu S., Shcherbakov, A.A., Voronin, S.M.: Finitely generated groups of germs of one-dimensional conformal mappings, and invariants for complex singular points of analytic foliations of the complex plane. Nonlinear Stokes Phenomena. Advances in Soviet Mathematics, vol. 14, pp. 57–105. American Mathematical Society, Providence (1993)Google Scholar
  10. 10.
    Granger, J.M.: Sur un Espace de Modules de germe de Courbe Plane, Bull. Sc. Math., \(2^{e}\) série, 3–16 (1979)Google Scholar
  11. 11.
    Gunning, R.C.: Introduction to Holomorphic Functions of Several Variables, vol. II, Local Theory, Wadsworth and Brooks/Cole, Advance Books and Software, California (1990)Google Scholar
  12. 12.
    Ilyashenko, Yu S.: Dulac’s memoir “On limit cycles” and related questions of the local theory of differential equations. (Russian) Uspekhi Mat. Nauk 40(6), 41–78 (1985)MathSciNetGoogle Scholar
  13. 13.
    Ilyashenko, Yu S.: Nonlinear Stokes phenomena. Nonlinear Stokes Phenomena. Advances in Soviet Mathematics, vol. 14, pp. 1–55. American Mathematical Society, Providence, RI (1993)CrossRefGoogle Scholar
  14. 14.
    Ilyashenko, YuS, Yakovenko, SYu.: Lectures on Analytic Differential Equations. Graduate Studies in Mathematics, vol. 86. American Mathematical Society, Providence (2008)zbMATHGoogle Scholar
  15. 15.
    Jaurez-Rosas, J.A.: Real-formal orbital rigidity for germs of real analytic vector fields on the real plane. J. Dyn. Control Syst. 2(22) (2016).  https://doi.org/10.1007/s10883-016-9314-y
  16. 16.
    Loray, F.: Rèduction formalle des singularities cuspidales de champs de vecteurs analytiques. J. Differ. Equ. 158, 152–173 (1999)CrossRefzbMATHGoogle Scholar
  17. 17.
    Martinet, J., Ramis, J.-P.: Problèmes de modules pour des équations différentielles non linéaires du premier ordre, Inst. Hautes Études Sci. Publ. Math. vol. 5, pp. 63–164 (1982)Google Scholar
  18. 18.
    Martinet, J., Ramis, J.-P.: Classification analytique des équations différentielles non linéaires résonnantes du premier ordre, Ann. Sci. École Norm. Sup. (4) 16 (1983); 4, 571–621 (1984)Google Scholar
  19. 19.
    Mattei, J.-F.: Modules de feuilletages holomorphes singuliers I. Équisingularité. Invent. Math. (French) 23(2), 297–325 (1991)CrossRefzbMATHGoogle Scholar
  20. 20.
    Ortiz-Bobadilla, L., Rosales-González, E., Voronin, S.M.: Rigidity theorem for degenerate singular points of germs of holomorphic vector fields in the complex plane. J. Dyn. Control Syst. 7(4), 553–599 (2001)CrossRefzbMATHGoogle Scholar
  21. 21.
    Ortiz-Bobadilla, L., Rosales-González, E., Voronin, S.M.: Rigidity theorems for generic holomorphic germs of dicritic foliations and vector fields in \(({\mathbb{C}}^2, 0)\). Mosc. Math. J. 5(1), 171–206 (2005)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Ortiz-Bobadilla, L., Rosales-González, E., Voronin, S.M.: Analytic normal forms of germs of holomorphic dicritic foliations. Mosc. Math. J. 8(3), 521–545 (2008)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Ortiz-Bobadilla, L., Rosales-González, E., Voronin, S.M.: Thom’s problem for degenerate singular points of holomorphic foliations in the plane. Mosc. Math. J. 12(4), 825–862 (2012)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Ortiz-Bobadilla, L., Rosales-González, E., Voronin, S.M.: Formal and analytic normal forms of germs of holomorphic nondicritic foliations. J. Singul. 9, 168–192 (2014)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Pérez-Marco, R.: Total convergence or general divergence in small divisors. Commun. Math. Phys. 223(3), 451–464 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Poincaré, H.: Note sur les propriétés des fonctions définies par des équations differéntielles. Journal de l’École Polytechnique 45, 13–26 (1878)Google Scholar
  27. 27.
    Ramis, J.P.: Confluence et resurgence. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 36, 706–716 (1989)zbMATHGoogle Scholar
  28. 28.
    Shcherbakov, A.A.: Topological and analytical conjugacy of noncommutative groups of germs of conformal mappings. Trudy Sem. Petrovsk. 10, 170–196 (1984)zbMATHGoogle Scholar
  29. 29.
    Strozyna, E., Zoladek, H.: The analytic and formal normal forms for the nilpotent singularity. J. Differ. Equ. 179, 479–537 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Takens, F.: Normal forms for certain singularities of vector fields, Colloque International sur l’Analyse et la Topologie Différentielle, Ann. Inst. Fourier (Grenoble) 23(2), 163–195 (1973)Google Scholar
  31. 31.
    Voronin, S.M.: Analytic classification of germs of conformal mappings \(({\mathbb{C}}, 0) \rightarrow ({\mathbb{C}}, 0)\) with identity linear part. Funct. Anal. Appl. 15(1), 1–17 (1981)CrossRefzbMATHGoogle Scholar
  32. 32.
    Voronin, S.M.: Orbital analytic equivalence of degenerate singular points of holomorphic vector fields on the complex plane, Tr. Mat. Inst. Steklova 213, 30–49 (1997); Differ. Uravn. s Veshchestv. i Kompleks. Vrem., 35–55 (Russian)Google Scholar
  33. 33.
    Voronin, S.M., Grintchy, A.A.: An analytic classifications of saddle resonant singular points of holomorphic vector fields in the complex plane. J. Dyn. Control Syst. 2(1), 21–53 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Voronin, S.M., Meshcheryakova, Y.I.: Analytic classification of generic degenerate elementary singular points of gems of holomorphic vector fields on the complex plane, (Russian) Izv. Vyssh. Uchebn. Zaved. Mat. 46(1), 13–16 (2002). Translation in Russian Math. (Iz. VUZ). 46(1), 11–14 (2002)Google Scholar
  35. 35.
    Yoccoz, J.-C.: Linéarisation des germes de diffeómorphismes holomorphes de \(({\mathbb{C}}, 0)\). C. R. Acad. Sci. Paris Sér. I Math. 306(1), 55–58 (1988)MathSciNetzbMATHGoogle Scholar
  36. 36.
    Yoccoz, J.-C.: Théorème de Siegel, nombres de Bruno et polynômes quadratiques. Astérisque 231, 3–88 (1995)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departamento de Álgebra, Análisis Matemático, Geometría y TopologíaUniversidad de ValladolidValladolidSpain

Personalised recommendations