Orbital Formal Rigidity for Germs of Holomorphic and Real Analytic Vector Fields
Conference paper
First Online:
Abstract
This survey paper is focused on discussing the main facts from the (orbital) formal rigidity phenomenon for germs of holomorphic and real analytic vector fields in the complex and real planes, exploring their similar and different properties.
Keywords
Holomorphic vector fields Real analytic vector fields Orbital formal rigidityReferences
- 1.Arnold, V.I.: Geometrical Methods in the Theory of Ordinary Differential Equations. Springer, New York (1983)CrossRefMATHGoogle Scholar
- 2.Arnold, V.I., Gusein-Zade, S.M., Varchenko, A.N.: Singularities of Differentiable Maps, Vol. I. The Classification of Critical Points, Caustics and Wave Fronts. Birkhäuser Boston Inc, Boston (1985)MATHGoogle Scholar
- 3.Brjuno, A.D.: Analytic form of differential equations. I, II, (Russian) Trudy Moskov. Mat. Obshch. 25, 119–262 (1971); 26, 199–239 (1972). English translation: Trans. Moscow Math. Soc. 25 (1971); 26 (1972)Google Scholar
- 4.Cerveau, D., Moussu, R.: Groups d’automorphismes de \((C, 0)\) et équations différentielles \(y \, d y + \ldots = 0\). Bull. Soc. Math. Fr. 116, 459–488 (1988)CrossRefMATHGoogle Scholar
- 5.Dulac, H.: Recherches sur les points singuliers des équations différ-entielles. Journal de l’École Polytechnique 2(9), 1–125 (1904)Google Scholar
- 6.Écalle, J.: Théorie itérative, Introduction à la théorie des invariants holomorphes. J. Math. Pures et Appl. 54, 183–258 (1975)MathSciNetMATHGoogle Scholar
- 7.Écalle, J.: Les fonctions résurgentes, Tome I, II, Orsay: Publications Mathématiques d’Orsay 81, 5. Université de Paris-Sud, Département de Mathématique (1981)Google Scholar
- 8.Elizarov, P.M., Ilyashenko, Yu S.: Remarks on the orbital analytic classification of germs of vector fields. Math. USSR Sbornik 49(1), 111–124 (1984)MathSciNetCrossRefMATHGoogle Scholar
- 9.Elizarov, P.M., Ilyashenko, Yu S., Shcherbakov, A.A., Voronin, S.M.: Finitely generated groups of germs of one-dimensional conformal mappings, and invariants for complex singular points of analytic foliations of the complex plane. Nonlinear Stokes Phenomena. Advances in Soviet Mathematics, vol. 14, pp. 57–105. American Mathematical Society, Providence (1993)Google Scholar
- 10.Granger, J.M.: Sur un Espace de Modules de germe de Courbe Plane, Bull. Sc. Math., \(2^{e}\) série, 3–16 (1979)Google Scholar
- 11.Gunning, R.C.: Introduction to Holomorphic Functions of Several Variables, vol. II, Local Theory, Wadsworth and Brooks/Cole, Advance Books and Software, California (1990)Google Scholar
- 12.Ilyashenko, Yu S.: Dulac’s memoir “On limit cycles” and related questions of the local theory of differential equations. (Russian) Uspekhi Mat. Nauk 40(6), 41–78 (1985)MathSciNetGoogle Scholar
- 13.Ilyashenko, Yu S.: Nonlinear Stokes phenomena. Nonlinear Stokes Phenomena. Advances in Soviet Mathematics, vol. 14, pp. 1–55. American Mathematical Society, Providence, RI (1993)CrossRefGoogle Scholar
- 14.Ilyashenko, YuS, Yakovenko, SYu.: Lectures on Analytic Differential Equations. Graduate Studies in Mathematics, vol. 86. American Mathematical Society, Providence (2008)MATHGoogle Scholar
- 15.Jaurez-Rosas, J.A.: Real-formal orbital rigidity for germs of real analytic vector fields on the real plane. J. Dyn. Control Syst. 2(22) (2016). https://doi.org/10.1007/s10883-016-9314-y
- 16.Loray, F.: Rèduction formalle des singularities cuspidales de champs de vecteurs analytiques. J. Differ. Equ. 158, 152–173 (1999)CrossRefMATHGoogle Scholar
- 17.Martinet, J., Ramis, J.-P.: Problèmes de modules pour des équations différentielles non linéaires du premier ordre, Inst. Hautes Études Sci. Publ. Math. vol. 5, pp. 63–164 (1982)Google Scholar
- 18.Martinet, J., Ramis, J.-P.: Classification analytique des équations différentielles non linéaires résonnantes du premier ordre, Ann. Sci. École Norm. Sup. (4) 16 (1983); 4, 571–621 (1984)Google Scholar
- 19.Mattei, J.-F.: Modules de feuilletages holomorphes singuliers I. Équisingularité. Invent. Math. (French) 23(2), 297–325 (1991)CrossRefMATHGoogle Scholar
- 20.Ortiz-Bobadilla, L., Rosales-González, E., Voronin, S.M.: Rigidity theorem for degenerate singular points of germs of holomorphic vector fields in the complex plane. J. Dyn. Control Syst. 7(4), 553–599 (2001)CrossRefMATHGoogle Scholar
- 21.Ortiz-Bobadilla, L., Rosales-González, E., Voronin, S.M.: Rigidity theorems for generic holomorphic germs of dicritic foliations and vector fields in \(({\mathbb{C}}^2, 0)\). Mosc. Math. J. 5(1), 171–206 (2005)MathSciNetMATHGoogle Scholar
- 22.Ortiz-Bobadilla, L., Rosales-González, E., Voronin, S.M.: Analytic normal forms of germs of holomorphic dicritic foliations. Mosc. Math. J. 8(3), 521–545 (2008)MathSciNetMATHGoogle Scholar
- 23.Ortiz-Bobadilla, L., Rosales-González, E., Voronin, S.M.: Thom’s problem for degenerate singular points of holomorphic foliations in the plane. Mosc. Math. J. 12(4), 825–862 (2012)MathSciNetMATHGoogle Scholar
- 24.Ortiz-Bobadilla, L., Rosales-González, E., Voronin, S.M.: Formal and analytic normal forms of germs of holomorphic nondicritic foliations. J. Singul. 9, 168–192 (2014)MathSciNetMATHGoogle Scholar
- 25.Pérez-Marco, R.: Total convergence or general divergence in small divisors. Commun. Math. Phys. 223(3), 451–464 (2001)MathSciNetCrossRefMATHGoogle Scholar
- 26.Poincaré, H.: Note sur les propriétés des fonctions définies par des équations differéntielles. Journal de l’École Polytechnique 45, 13–26 (1878)Google Scholar
- 27.Ramis, J.P.: Confluence et resurgence. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 36, 706–716 (1989)MATHGoogle Scholar
- 28.Shcherbakov, A.A.: Topological and analytical conjugacy of noncommutative groups of germs of conformal mappings. Trudy Sem. Petrovsk. 10, 170–196 (1984)MATHGoogle Scholar
- 29.Strozyna, E., Zoladek, H.: The analytic and formal normal forms for the nilpotent singularity. J. Differ. Equ. 179, 479–537 (2002)MathSciNetCrossRefMATHGoogle Scholar
- 30.Takens, F.: Normal forms for certain singularities of vector fields, Colloque International sur l’Analyse et la Topologie Différentielle, Ann. Inst. Fourier (Grenoble) 23(2), 163–195 (1973)Google Scholar
- 31.Voronin, S.M.: Analytic classification of germs of conformal mappings \(({\mathbb{C}}, 0) \rightarrow ({\mathbb{C}}, 0)\) with identity linear part. Funct. Anal. Appl. 15(1), 1–17 (1981)CrossRefMATHGoogle Scholar
- 32.Voronin, S.M.: Orbital analytic equivalence of degenerate singular points of holomorphic vector fields on the complex plane, Tr. Mat. Inst. Steklova 213, 30–49 (1997); Differ. Uravn. s Veshchestv. i Kompleks. Vrem., 35–55 (Russian)Google Scholar
- 33.Voronin, S.M., Grintchy, A.A.: An analytic classifications of saddle resonant singular points of holomorphic vector fields in the complex plane. J. Dyn. Control Syst. 2(1), 21–53 (1996)MathSciNetCrossRefMATHGoogle Scholar
- 34.Voronin, S.M., Meshcheryakova, Y.I.: Analytic classification of generic degenerate elementary singular points of gems of holomorphic vector fields on the complex plane, (Russian) Izv. Vyssh. Uchebn. Zaved. Mat. 46(1), 13–16 (2002). Translation in Russian Math. (Iz. VUZ). 46(1), 11–14 (2002)Google Scholar
- 35.Yoccoz, J.-C.: Linéarisation des germes de diffeómorphismes holomorphes de \(({\mathbb{C}}, 0)\). C. R. Acad. Sci. Paris Sér. I Math. 306(1), 55–58 (1988)MathSciNetMATHGoogle Scholar
- 36.Yoccoz, J.-C.: Théorème de Siegel, nombres de Bruno et polynômes quadratiques. Astérisque 231, 3–88 (1995)Google Scholar
Copyright information
© Springer International Publishing AG, part of Springer Nature 2018