Advertisement

Arc Criterion of Normal Embedding

  • Lev Birbrair
  • Rodrigo Mendes
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 222)

Abstract

We present a criterion of local normal embedding of a semialgebraic (or definable in a polynomially bounded o-minimal structure) germ contained in \(\mathbb R^n\) in terms of orders of contact of arcs. Namely, we prove that a semialgebraic germ is normally embedded if and only if for any pair of arcs, coming to this point the inner order of contact is equal to the outer order of contact.

Keywords

Normal embedding Singularities 

1991 Mathematics Subject Classification

14B05 32S50 

Notes

Acknowledgements

We would like to thank Alexandre Fernandes, Edson Sampaio, Anne Pichon and Walter Neumann for useful discussions. We would like also to thank the anonymous referee for his patience and extremely useful comments and corrections.

References

  1. 1.
    Birbrair, L., Brasselet, J.-P.: Metric homology. Commun. Pure Appl. Math. LIII, 1434–1447 (2000)Google Scholar
  2. 2.
    Birbrair, L., Fernandes, A., Le, D.T., Sampaio, J.E.: Lipschitz regular complex algebraic sets are smooth. Proc. Amer. Math. Soc. 144(3), 983–987 (2016)Google Scholar
  3. 3.
    Birbrair, L., Fernandes, A., Neumann, W.D.: On normal embedding of complex algebraic surfaces. Real and complex singularities. Lond. Math. Soc. Lecture Note Ser. (380), 17–22. Cambridge University Press, Cambridge (2010)Google Scholar
  4. 4.
    Birbrair, L., Mostowski, T.: Normal embeddings of semialgebraic sets. Michigan Math. J. 47, 125–132 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bröcker, L.: Families of semialgebraic sets and limits. In: Real Algebraic Geometry, Lect. Notes. Math. (1524) pp. 145–162. Springer, Berlin (1992)Google Scholar
  6. 6.
    Birbrair, L., Fernandes, A.: Metric theory of semialgebraic curves. Rev. Mat. Complut. 13(2), 369–382 (2000)Google Scholar
  7. 7.
    Katz, K., Katz, M., Kerner, D., Liokumovich, Y., Solomon, J.: Determinantal variety and bilipschitz equivalence. J. Topol. Anal. 10, 27 (2018)Google Scholar
  8. 8.
    Kurdyka, K., Orro, P.: Distance géodésique sur un sous-analytique. Revista Mat. Univ. Complutense de Madrid 10, 173–182 (1997)Google Scholar
  9. 9.
    Neumann, W.D., Pedersen, H.M., Pichon, A.: Minimal surface singularities are Lipschitz normally embedded (2015). arXiv:1503.03301
  10. 10.
    Pedersen, H.M.: Maria Aparecida Soares Ruas. Lipschitz Normal Embeddings and Determinantal Singularities (2016). arXiv:1607.07746
  11. 11.
    Valette, G.: Vanishing homology. Selecta Math. (N.S.) 16(2), 267–296 (2010)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departamento of MatemáticaUniversidade Federal do CearáFortalezaBrazil
  2. 2.Instituto de Ciências Exatas e da NaturezaUniversidade de Integração Internacional da Lusofonia Afro-Brasileira (unilab)AcarapeBrazil

Personalised recommendations