On the Factorization of the Polar of a Plane Branch

Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 222)

Abstract

Irreducible complex plane curve germs with the same characteristic exponents form an equisingularity class. In this paper we determine the Zariski invariants that characterize the general polar of a general member of such an equisingularity class. More precisely, we will describe explicitly the characteristic exponents of the irreducible components of the polar and their mutual intersection multiplicities, allowing us in particular to describe completely the content of each of Merle’s packages of the polar.

Keywords

Polar curves Polar decomposition Equisingularity 

References

  1. 1.
    Casas-Alvero, E.: Singularities of Plane Curves. Cambridge University Press (2000)Google Scholar
  2. 2.
    Casas-Alvero, E.: On the singularities of polar curves. Manuscripta Math. 43, 167–190 (1983)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Casas-Alvero, E.: Infinitely near imposed singularities and singularities of polar curves. Math. Ann. 287, 429–454 (1990)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Enriques, F., Chisini, O.: Lezioni sulla teoria geometrica delle equazioni e delle funzioni algebriche. N. Zanichelli, Bologna (1915)MATHGoogle Scholar
  5. 5.
    Hefez, A., Hernandes, M.E., Iglesias, M.F.H.: On polars of plane branches. In: Singularities in Geometry, Topology, Foliations and Dynamics. Trends in Mathematics, pp. 135–153. Birkhäuser (2017)Google Scholar
  6. 6.
    Hefez, A., Hernandes, M.E., Iglesias, M.F.H.: Plane branches with Newton nondegenerate polars. arxiv: 160.07522 [math.AG]
  7. 7.
    Merle, M.: Invariants polaires des courbes planes. Inventiones Mathematicae 41, 103–111 (1977)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Pham, F.: Deformations equisingulières des idéaux jacobiens des courbes planes. In: Proceedings of Liverpool Symposium on Singularities II of Lecturer Notes in Mathematics, vol. 209, pp. Springer, New York (1971)Google Scholar
  9. 9.
    Teissier, B.: Variétés polaires I: Invariants polaires des singularités d’hypersurfaces. Inventiones Mathematicae 41(3), 267–292 (1977)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • A. Hefez
    • 1
  • M. E. Hernandes
    • 2
  • M. F. H. Iglesias
    • 3
  1. 1.Universidade Federal FluminenseSão Francisco, NiteróiBrazil
  2. 2.Universidade Estadual de MaringáMaringáBrazil
  3. 3.Universidade Federal FluminenseNiteroiBrazil

Personalised recommendations