Skip to main content

Boosting Collective Entity Linking via Type-Guided Semantic Embedding

  • Conference paper
  • First Online:
Natural Language Processing and Chinese Computing (NLPCC 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10619))

Abstract

Entity Linking (EL) is the task of mapping mentions in natural-language text to their corresponding entities in a knowledge base (KB). Type modeling for mention and entity could be beneficial for entity linking. In this paper, we propose a type-guided semantic embedding approach to boost collective entity linking. We use Bidirectional Long Short-Term Memory (BiLSTM) and dynamic convolutional neural network (DCNN) to model the mention and the entity respectively. Then, we build a graph with the semantic relatedness of mentions and entities for the collective entity linking. Finally, we evaluate our approach by comparing the state-of-the-art entity linking approaches over a wide range of very different data sets, such as TAC-KBP from 2009 to 2013, AIDA, DBPediaSpotlight, N3-Reuters-128, and N3-RSS-500. Besides, we also evaluate our approach with a Chinese Corpora. The experiments reveal that the modeling for entity type can be very beneficial to the entity linking.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://baike.baidu.com/.

  2. 2.

    http://aksw.org/Projects/GERBIL.html.

  3. 3.

    https://github.com/freme-project/freme-ner.

References

  1. Ceccarelli, D., Lucchese, C., Orlando, S., Perego, R., Trani, S.: Dexter: an open source framework for entity linking. In: Proceedings of the Sixth International Workshop on Exploiting Semantic Annotations in Information Retrieval, ESAIR 2013, pp. 17–20. ACM, New York (2013). http://doi.acm.org/10.1145/2513204.2513212

  2. Ceccarelli, D., Lucchese, C., Orlando, S., Perego, R., Trani, S.: Learning relatedness measures for entity linking. In: Proceedings of the 22nd ACM International Conference on Information & Knowledge Management, pp. 139–148. ACM (2013)

    Google Scholar 

  3. Cucerzan, S.: Large-scale named entity disambiguation based on Wikipedia data. In: EMNLP-CoNLL (2007)

    Google Scholar 

  4. Dojchinovski, M., Kliegr, T.: Entityclassifier.eu: real-time classification of entities in text with Wikipedia. In: Blockeel, H., Kersting, K., Nijssen, S., Železný, F. (eds.) ECML PKDD 2013. LNCS (LNAI), vol. 8190, pp. 654–658. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40994-3_48

    Chapter  Google Scholar 

  5. Globerson, A., Lazic, N., Chakrabarti, S., Subramanya, A., Ringaard, M., Pereira, F.: Collective entity resolution with multi-focal attention. In: ACL (2016)

    Google Scholar 

  6. Han, X., Sun, L.: A generative entity-mention model for linking entities with knowledge base. In: ACL (2011)

    Google Scholar 

  7. Han, X., Sun, L., Zhao, J.: Collective entity linking in web text: a graph-based method. In: Proceedings of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2011, pp. 765–774. ACM, New York (2011). http://doi.acm.org/10.1145/2009916.2010019

  8. Han, X., Zhao, J.: NLPR_KBP in TAC 2009 KBP track: a two-stage method to entity linking. In: TAC (2009)

    Google Scholar 

  9. He, Z., Liu, S., Li, M., Zhou, M., Zhang, L., Wang, H.: Learning entity representation for entity disambiguation. In: ACL (2013)

    Google Scholar 

  10. He, Z., Liu, S., Song, Y., Li, M., Zhou, M., Wang, H.: Efficient collective entity linking with stacking. In: EMNLP, pp. 426–435 (2013)

    Google Scholar 

  11. Hoffart, J., Yosef, M.A., Bordino, I., Fürstenau, H., Pinkal, M., Spaniol, M., Taneva, B., Thater, S., Weikum, G.: Robust disambiguation of named entities in text. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing, pp. 782–792. Association for Computational Linguistics (2011)

    Google Scholar 

  12. Huang, H., Cao, Y., Huang, X., Ji, H., Lin, C.Y.: Collective tweet wikification based on semi-supervised graph regularization. In: ACL (2014)

    Google Scholar 

  13. Huang, H., Heck, L., Ji, H.: Leveraging deep neural networks and knowledge graphs for entity disambiguation. CoRR abs/1504.07678 (2015)

    Google Scholar 

  14. Kalchbrenner, N., Grefenstette, E., Blunsom, P.: A convolutional neural network for modelling sentences. arXiv preprint arXiv:1404.2188 (2014)

  15. Lazic, N., Subramanya, A., Ringgaard, M., Pereira, F.: Plato: a selective context model for entity resolution. TACL 3, 503–515 (2015)

    Google Scholar 

  16. Le, Q.V., Mikolov, T.: Distributed representations of sentences and documents. In: ICML, vol. 14, pp. 1188–1196 (2014)

    Google Scholar 

  17. Mendes, P.N., Jakob, M., Garcła-silva, A., Bizer, C.: DBpedia spotlight: shedding light on the web of documents. In: Proceedings of the 7th International Conference on Semantic Systems (I-Semantics) (2011)

    Google Scholar 

  18. Moro, A., Raganato, A., Navigli, R.: Entity linking meets word sense disambiguation: a unified approach. Trans. Assoc. Comput. Linguist. 2, 231–244 (2014)

    Google Scholar 

  19. Piccinno, F., Ferragina, P.: From TagME to WAT: a new entity annotator. In: Proceedings of the First International Workshop on Entity Recognition & Disambiguation, pp. 55–62. ACM (2014)

    Google Scholar 

  20. Shen, W., Wang, J., Han, J.: Entity linking with a knowledge base: issues, techniques, and solutions. IEEE Trans. Knowl. Data Eng. 27, 443–460 (2015)

    Article  Google Scholar 

  21. Shen, W., Wang, J., Luo, P., Wang, M.: LINDEN: linking named entities with knowledge base via semantic knowledge. In: WWW (2012)

    Google Scholar 

  22. Sil, A., Florian, R.: One for all: towards language independent named entity linking. In: ACL (2016)

    Google Scholar 

  23. Sun, Y., Lin, L., Tang, D., Yang, N., Ji, Z., Wang, X.: Modeling mention, context and entity with neural networks for entity disambiguation. In: Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), pp. 1333–1339 (2015)

    Google Scholar 

  24. Tong, H., Faloutsos, C., Pan, J.Y.: Random walk with restart: fast solutions and applications. Knowl. Inf. Syst. 14, 327–346 (2008)

    Article  MATH  Google Scholar 

  25. Van Erp, M., Rizzo, G., Troncy, R.: Learning with the web: Spotting named entities on the intersection of NERD and machine learning. In: # MSM, pp. 27–30 (2013)

    Google Scholar 

  26. Waitelonis, J., Sack, H.: Named Entity Linking in# Tweets with KEA (2016)

    Google Scholar 

  27. Yamada, I., Shindo, H., Takeda, H., Takefuji, Y.: Joint learning of the embedding of words and entities for named entity disambiguation. In: CoNLL (2016)

    Google Scholar 

  28. Zhang, L., Rettinger, A.: X-LiSA: cross-lingual semantic annotation. Proc. VLDB Endow. 7(13), 1693–1696 (2014). https://doi.org/10.14778/2733004.2733063

    Article  Google Scholar 

  29. Zheng, Z., Li, F., Huang, M., Zhu, X.: Learning to link entities with knowledge base. In: HLT-NAACL (2010)

    Google Scholar 

  30. Zwicklbauer, S., Seifert, C., Granitzer, M.: Robust and collective entity disambiguation through semantic embeddings. In: SIGIR (2016)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the Zhejiang Provincial Natural Science Foundation of China (No. LY17F020015), the Chinese Knowledge Center of Engineering Science and Technology (CKCEST), and the Fundamental Research Funds for the Central Universities (No. 2017FZA5016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiming Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lu, W., Zhou, Y., Lu, H., Ma, P., Zhang, Z., Wei, B. (2018). Boosting Collective Entity Linking via Type-Guided Semantic Embedding. In: Huang, X., Jiang, J., Zhao, D., Feng, Y., Hong, Y. (eds) Natural Language Processing and Chinese Computing. NLPCC 2017. Lecture Notes in Computer Science(), vol 10619. Springer, Cham. https://doi.org/10.1007/978-3-319-73618-1_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-73618-1_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-73617-4

  • Online ISBN: 978-3-319-73618-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics