Advertisement

VERGE in VBS 2018

  • Anastasia Moumtzidou
  • Stelios Andreadis
  • Foteini Markatopoulou
  • Damianos Galanopoulos
  • Ilias Gialampoukidis
  • Stefanos Vrochidis
  • Vasileios Mezaris
  • Ioannis Kompatsiaris
  • Ioannis Patras
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10705)

Abstract

This paper presents VERGE interactive video retrieval engine, which is capable of browsing and searching into video content. The system integrates several content-based analysis and retrieval modules including concept detection, clustering, visual and textual similarity search, query analysis and reranking, as well as multimodal fusion.

Notes

Acknowledgements

This work was supported by the EU’s Horizon 2020 research and innovation programme under grant agreements H2020-645012 KRISTINA, H2020-779962 V4Design, H2020-732665 EMMA, and H2020-687786 InVID.

References

  1. 1.
    Awad, G., Butt, A., Fiscus, J., et al.: Trecvid 2017: Evaluating ad-hoc and instance video search, events detection, video captioning and hyperlinking. In: Proceedings of TRECVID 2017. NIST (2017)Google Scholar
  2. 2.
    Cobârzan, C., Schoeffmann, K., Bailer, W., et al.: Interactive video search tools: a detailed analysis of the video browser showdown 2015. Multimed. Tools Appl. 76(4), 5539–5571 (2017)CrossRefGoogle Scholar
  3. 3.
    Szegedy, C., Liu, W., Jia, Y., et al.: Going deeper with convolutions. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 00:1–00:9 (2015)Google Scholar
  4. 4.
    Jegou, H., Douze, M., Schmid, C.: Product quantization for nearest neighbor search. IEEE Trans. Pattern Anal. Mach. Intell. 33(1), 117–128 (2011)CrossRefGoogle Scholar
  5. 5.
    Markatopoulou, F., Moumtzidou, A., Galanopoulos, D., et al.: ITI-CERTH participation in TRECVID 2016. In: TRECVID 2016 Workshop, USA (2016)Google Scholar
  6. 6.
    Pittaras, N., Markatopoulou, F., Mezaris, V., Patras, I.: Comparison of fine-tuning and extension strategies for deep convolutional neural networks. In: Amsaleg, L., Guðmundsson, G.Þ., Gurrin, C., Jónsson, B.Þ., Satoh, S. (eds.) MMM 2017. LNCS, vol. 10132, pp. 102–114. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-51811-4_9 CrossRefGoogle Scholar
  7. 7.
    Ye, G., Li, Y., Xu, H., et al.: Eventnet: a large scale structured concept library for complex event detection in video. In: ACM MM (2015)Google Scholar
  8. 8.
    Zhou, B., Lapedriza, A., Xiao, J., et al.: Learning deep features for scene recognition using places database. In: NIPS, pp. 487–495 (2014)Google Scholar
  9. 9.
    Markatopoulou, F., Galanopoulos, D., Mezaris, V., et al.: Query and keyframe representations for ad-hoc video search. In: ICMR, pp. 407–411 (2017)Google Scholar
  10. 10.
    Gabrilovich, E., Markovitch, S.: Computing semantic relatedness using Wikipedia-based explicit semantic analysis. In: Proceedings of 20th International Joint Conference on Artificial Intelligence, pp. 1606–1611. Morgan Kaufmann Publishers Inc. (2007)Google Scholar
  11. 11.
    Galanopoulos, D., Markatopoulou, F., Mezaris, V., Patras, I.: Concept language models and event-based concept number selection for zero-example event detection. In: ICMR, pp. 397–401. ACM (2017)Google Scholar
  12. 12.
    Moumtzidou, A., et al.: VERGE in VBS 2017. In: Amsaleg, L., Guðmundsson, G.Þ., Gurrin, C., Jónsson, B.Þ., Satoh, S. (eds.) MMM 2017. LNCS, vol. 10133, pp. 486–492. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-51814-5_46 CrossRefGoogle Scholar
  13. 13.
    Johnson, J., Karpathy, A., Fei-Fei, L.: DenseCap: fully convolutional localization networks for dense captioning. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4565–4574 (2016)Google Scholar
  14. 14.
    Daiber, J., Jakob, M., Hokamp, C., Mendes, P.N.: Improving efficiency and accuracy in multilingual entity extraction. In: Proceedings of the 9th International Conference on Semantic Systems, I-SEMANTICS 2013, pp. 121–124. ACM, New York (2013)Google Scholar
  15. 15.
    Gialampoukidis, I., Moumtzidou, A., Liparas, D., et al.: Multimedia retrieval based on non-linear graph-based fusion and partial least squares regression. Multimed. Tools Appl. 76(21), 22383–22403 (2017)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Anastasia Moumtzidou
    • 1
  • Stelios Andreadis
    • 1
  • Foteini Markatopoulou
    • 1
    • 2
  • Damianos Galanopoulos
    • 1
  • Ilias Gialampoukidis
    • 1
  • Stefanos Vrochidis
    • 1
  • Vasileios Mezaris
    • 1
  • Ioannis Kompatsiaris
    • 1
  • Ioannis Patras
    • 2
  1. 1.Information Technologies InstituteCentre for Research & Technology HellasThessalonikiGreece
  2. 2.School of Electronic Engineering and Computer ScienceQMULLondonUK

Personalised recommendations