The ITEC Collaborative Video Search System at the Video Browser Showdown 2018

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10705)


We present our video search system for the Video Browser Showdown (VBS) 2018 competition. It is based on the collaborative system used in 2017, which already performed well but also revealed high potential for improvement. Hence, based on our experience we introduce several major improvements, particularly (1) a strong optimization of similarity search, (2) various improvements for concept-based search, (3) a new flexible video inspector view, and (4) extended collaboration features, as well as numerous minor adjustments and enhancements, mainly concerning the user interface and means of user interaction. Moreover, we present a spectator view that visualizes the current activity of the team members to the audience to make the competition more attractive.


Video retrieval Interactive search Collaboration 



This work was supported by Universität Klagenfurt and Lakeside Labs GmbH, Klagenfurt, Austria and funding from the European Regional Development Fund and the Carinthian Economic Promotion Fund (KWF) under grant KWF-20214 U. 3520/26336/38165.


  1. 1.
    Awad, G., Butt, A., Fiscus, J., Joy, D., Delgado, A., Michel, M., Smeaton, A.F., Graham, Y., Kraaij, W., Quénot, G., Eskevich, M., Ordelman, R., Jones, G.J.F., Huet, B.: Trecvid 2017: evaluating ad-hoc and instance video search, events detection, video captioning and hyperlinking. In: Proceedings of TRECVID 2017, NIST, USA (2017)Google Scholar
  2. 2.
    Barthel, K.U., Hezel, N., Mackowiak, R.: Navigating a graph of scenes for exploring large video collections. In: Tian, Q., Sebe, N., Qi, G.-J., Huet, B., Hong, R., Liu, X. (eds.) MMM 2016. LNCS, vol. 9517, pp. 418–423. Springer, Cham (2016). CrossRefGoogle Scholar
  3. 3.
    Blažek, A., Lokoč, J., Matzner, F., Skopal, T.: Enhanced signature-based video browser. In: He, X., Luo, S., Tao, D., Xu, C., Yang, J., Hasan, M.A. (eds.) MMM 2015. LNCS, vol. 8936, pp. 243–248. Springer, Cham (2015). Google Scholar
  4. 4.
    Cobârzan, C., Schoeffmann, K., Bailer, W., Hürst, W., Blažek, A., Lokoč, J., Vrochidis, S., Barthel, K.U., Rossetto, L.: Interactive video search tools: a detailed analysis of the video browser showdown 2015. Multimed. Tools Appl. 76(4), 5539–5571 (2017)CrossRefGoogle Scholar
  5. 5.
    Hürst, W., van de Werken, R., Hoet, M.: A storyboard-based interface for mobile video browsing. In: He, X., Luo, S., Tao, D., Xu, C., Yang, J., Hasan, M.A. (eds.) MMM 2015. LNCS, vol. 8936, pp. 261–265. Springer, Cham (2015). Google Scholar
  6. 6.
    Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., Fei-Fei, L.: Large-scale video classification with convolutional neural networks. In: IEEE Conference on Computer Vision and Pattern Recognition 2014 (CVPR), pp. 1725–1732. June 2014Google Scholar
  7. 7.
    Micó, M.L., Oncina, J., Vidal, E.: A new version of the nearest-neighbour approximating and eliminating search algorithm (AESA) with linear preprocessing time and memory requirements. Pattern Recogn. Lett. 15(1), 9–17 (1994)CrossRefGoogle Scholar
  8. 8.
    Primus, M.J., Muenzer, B., Petscharnig, S., Schoeffmann, K.: ITEC-UNIKLU: Ad-hoc video search submission 2016. In: Proceedings of TRECVID 2017. NIST, USA (2016)Google Scholar
  9. 9.
    Schoeffmann, K.: A user-centric media retrieval competition: the video browser showdown 2012–2014. MultiMed. IEEE 21(4), 8–13 (2014)CrossRefGoogle Scholar
  10. 10.
    Schoeffmann, K., Primus, M.J., Muenzer, B., Petscharnig, S., Karisch, C., Xu, Q., Huerst, W.: Collaborative feature maps for interactive video search. In: Amsaleg, L., Guðmundsson, G.Þ., Gurrin, C., Jónsson, B.Þ., Satoh, S. (eds.) MMM 2017. LNCS, vol. 10133, pp. 457–462. Springer, Cham (2017). CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Institute of Information TechnologyKlagenfurt UniversityKlagenfurtAustria

Personalised recommendations