Sketch-Based Similarity Search for Collaborative Feature Maps

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10705)


Past editions of the annual Video Browser Showdown (VBS) event have brought forward many tools targeting a diverse amount of techniques for interactive video search, among which sketch-based search showed promising results. Aiming at exploring this direction further, we present a custom approach for tackling the problem of finding similarities in the TRECVID IACC.3 dataset via hand-drawn pictures using color compositions together with contour matching. The proposed methodology is integrated into the established Collaborative Feature Maps (CFM) system, which has first been utilized in the VBS 2017 challenge.


Interactive video search Collaboration Sketch-based search 


  1. 1.
    Awad, G., Fiscus, J., Michel, M., Joy, D., Kraaij, W., Smeaton, A.F., Quénot, G., Eskevich, M., Aly, R., Ordelman, R.: Evaluating video search, video event detection, localization, and hyperlinking. In: Proceedings of TRECVID, TRECVID 2016, vol. 2016 (2016)Google Scholar
  2. 2.
    Blažek, A., Lokoč, J., Matzner, F., Skopal, T.: Enhanced signature-based video browser. In: He, X., Luo, S., Tao, D., Xu, C., Yang, J., Hasan, M.A. (eds.) MMM 2015. LNCS, vol. 8936, pp. 243–248. Springer, Cham (2015). Google Scholar
  3. 3.
    Bui, T., Collomosse, J.: Scalable sketch-based image retrieval using color gradient features. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1012–1019 (2016)Google Scholar
  4. 4.
    Chen, J., Pappas, T.N., Mojsilović, A., Rogowitz, B.E.: Adaptive perceptual color-texture image segmentation. IEEE Trans. Image Process. 14(10), 1524–1536 (2005)CrossRefGoogle Scholar
  5. 5.
    Cobârzan, C., Schoeffmann, K., Bailer, W., Hürst, W., Blažek, A., Lokoč, J., Vrochidis, S., Barthel, K.U., Rossetto, L.: Interactive video search tools: a detailed analysis of the video browser showdown 2015. Multimedia Tools Appl. 76(4), 5539–5571 (2017)CrossRefGoogle Scholar
  6. 6.
    Lokoč, J., Blažek, A., Skopal, T.: Signature-based video browser. In: Gurrin, C., Hopfgartner, F., Hurst, W., Johansen, H., Lee, H., O’Connor, N. (eds.) MMM 2014. LNCS, vol. 8326, pp. 415–418. Springer, Cham (2014). CrossRefGoogle Scholar
  7. 7.
    Mojsilović, A., Hu, J., Soljanin, E.: Extraction of perceptually important colors and similarity measurement for image matching retrieval and analysis. IEEE Trans. Image Process. 11, 1238–1248 (2002)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Schoeffmann, K.: A user-centric media retrieval competition: the video browser showdown 2012–2014. IEEE Multimedia 21(4), 8–13 (2014)CrossRefGoogle Scholar
  9. 9.
    Schoeffmann, K., Primus, M.J., Muenzer, B., Petscharnig, S., Karisch, C., Xu, Q., Huerst, W.: Collaborative feature maps for interactive video search. In: Amsaleg, L., Guðmundsson, G.Þ., Gurrin, C., Jónsson, B.Þ., Satoh, S. (eds.) MMM 2017. LNCS, vol. 10133, pp. 457–462. Springer, Cham (2017). CrossRefGoogle Scholar
  10. 10.
    Smeaton, A.F., Over, P., Kraaij, W.: Evaluation campaigns and TRECVid. In: Proceedings of the 8th ACM International Workshop on Multimedia Information Retrieval, MIR 2006, pp. 321–330. ACM, New York (2006)Google Scholar
  11. 11.
    Sun, X., Wang, C., Xu, C., Zhang, L.: Indexing billions of images for sketch-based retrieval. In: Proceedings of the 21st ACM international conference on Multimedia, MM 2013, pp. 233–242 (2013)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Institute of Information TechnologyKlagenfurt University (AAU)KlagenfurtAustria

Personalised recommendations