Competitive Video Retrieval with vitrivr

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10705)


This paper presents the competitive video retrieval capabilities of vitrivr. The vitrivr stack is the continuation of the IMOTION system which participated to the Video Browser Showdown competitions since 2015. The primary focus of vitrivr and its participation in this competition is to simplify and generalize the system’s individual components, making them easier to deploy and use. The entire vitrivr stack is made available as open source software.


Video Browser Showdown Large-scale Video Retrieval Exact Query Results Primary System Components Angular Framework 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was partly supported by the Chist-Era project IMOTION with contributions from the Swiss National Science Foundation (SNSF, contract no. 20CH21_151571).


  1. 1.
    Cobârzan, C., Schoeffmann, K., Bailer, W., Hürst, W., Blažek, A., Lokoč, J., Vrochidis, S., Barthel, K.W., Rossetto, L.: Interactive video search tools: a detailed analysis of the video browser showdown 2015. Multimedia Tools Appl. 76(4), 5539–5571 (2017)CrossRefGoogle Scholar
  2. 2.
    Giangreco, I., Schuldt, H.: ADAM\(_{pro}\): database support for big multimedia retrieval. Datenbank-Spektrum 16(1), 17–26 (2016)CrossRefGoogle Scholar
  3. 3.
    Rossetto, L., Giangreco, I., Heller, S., Tănase, C., Schuldt, H., Dupont, S., Seddati, O., Sezgin, M., Altıok, O.C., Sahillioğlu, Y.: IMOTION - searching for video sequences using multi-shot sketch. In: Tian, Q., Sebe, N., Qi, G.-J., Huet, B., Hong, R., Liu, X. (eds.) MMM 2016. LNCS, vol. 9517, pp. 377–382. Springer, Cham (2016). CrossRefGoogle Scholar
  4. 4.
    Rossetto, L., Giangreco, I., Schuldt, H.: Cineast: a multi-feature sketch-based video retrieval engine. In: Proceedings of the 2014 IEEE International Symposium on Multimedia (ISM 2014), Taichung, Taiwan, pp. 18–23. IEEE Computer Society, December 2014Google Scholar
  5. 5.
    Rossetto, L., Giangreco, I., Schuldt, H., Dupont, S., Seddati, O., Sezgin, M., Sahillioğlu, Y.: IMOTION — a content-based video retrieval engine. In: He, X., Luo, S., Tao, D., Xu, C., Yang, J., Hasan, M.A. (eds.) MMM 2015. LNCS, vol. 8936, pp. 255–260. Springer, Cham (2015). Google Scholar
  6. 6.
    Rossetto, L., Giangreco, I., Tănase, C., Schuldt, H.: vitrivr: a flexible retrieval stack supporting multiple query modes for searching in multimedia collections. In: Proceedings of the 2016 ACM Conference on Multimedia Conference (ACM MM 2016), Amsterdam, The Netherlands, pp. 1183–1186. ACM, October 2016Google Scholar
  7. 7.
    Rossetto, L., Giangreco, I., Tănase, C., Schuldt, H.: Multimodal video retrieval with the 2017 IMOTION system. In: Proceedings of the 2017 ACM International Conference on Multimedia Retrieval (ICMR 2017), Bucharest, Romania, pp. 457–460. ACM, June 2017Google Scholar
  8. 8.
    Rossetto, L., Giangreco, I., Tănase, C., Schuldt, H., Dupont, S., Seddati, O.: Enhanced retrieval and browsing in the IMOTION system. In: Amsaleg, L., Guðmundsson, G.Þ., Gurrin, C., Jónsson, B.Þ., Satoh, S. (eds.) MMM 2017. LNCS, vol. 10133, pp. 469–474. Springer, Cham (2017). CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Databases and Information Systems Research Group, Department of Mathematics and Computer ScienceUniversity of BaselBaselSwitzerland

Personalised recommendations