Skip to main content

Summary and Conclusion

  • Chapter
  • First Online:
  • 247 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Since the response of precipitation over the Indian subcontinent has not been completely linear, the ISM and WDs have distinctly different origin and dynamics (Sarkar et al. in Earth Planet Sci Lett 177:209–218, 2000). We suggest that the impact of WDs in the Himalayan region makes the monsoonal system complex to understand its behavior. High resolution palaeoclimatic records are insufficient from the Himalaya, therefore, the present records may be helpful to develop the models for ISM variability and WDs through an improved understanding of the monsoon-climate interaction. The records are also helpful to reveal the complex nature of ISM and its relationship with different climatic phenomena, e.g., ENSO, NAO and tropical mid latitude interactions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adams J, Maslin M, Thomas E (1999) Sudden climate transitions during the Quaternary. Prog Phys Geogr 23:1–36

    Article  Google Scholar 

  • Agnihotri R, Dutta K, Bhushan R, Somayajulu BLK (2002) Evidence for solar forcing on the Indian monsoon during the last millennium. Earth Planet Sci Lett 198:521–527

    Article  Google Scholar 

  • Alley RB (2000) The Younger Dryas cold interval as viewed from Central Greenland. Quatern Sci Rev 19:213–226

    Article  Google Scholar 

  • Alley RB, Meese DA, Shuman CA, Gow AJ, Taylor KC, Grootes PM, White JWC, Ram M, Waddington ED, Maylewski PA, Zielinski GA (1993) Abrupt increase in Greenland snow accumulation at the end of the Younger Dryas event. Nature 362:527–529

    Article  Google Scholar 

  • Anderson DM, Overpeck J, Gupta AK (2002) Increase in the Asian southwest monsoon during the past four centuries. Science 297:596–599

    Article  Google Scholar 

  • Bar-Matthews M, Ayalon A, Gilmour M, Matthews A, Hwkesworth CJ (2003) Sea-land oxygen isotopic relationships from planktonic foraminifera and speleothems in the Eastern Mediterranean region and their implication for paleorainfall during interglacial intervals. Geochim Cosmochim Acta 67:3181–3199

    Article  Google Scholar 

  • Basavaiah N, Juyal N, Pant RK, Yadava MG, Singhvi AK (2004) Late Quaternary climate changes reconstructed from mineral magnetic studies from proglacial lake deposits of Higher Central Himalaya. J Geophys Union 8(1):27–37

    Google Scholar 

  • Berkelhammer M, Sinha A, Mudelsee M, Cheng H, Edwards RL, Cannariato K (2010) Persistent multidecadal power of the Indian Summer Monsoon. Earth Planet Sci Lett 290:166–172

    Article  Google Scholar 

  • Bond G, Broecker W, Johnsen S, McManus J, Labeyrie L, Jouzel J, Bonani G (1993) Correlations between climate records from North Atlantic sediments and Greenland ice. Nature 365:143–147

    Article  Google Scholar 

  • Bookhagen B, Thiede RC, Strecker MR (2005) Late Quaternary intensified monsoon phases control landscape evolution in the northwest Himalaya. Geology 33:149–152

    Article  Google Scholar 

  • Bradley RS, Jones PD (1993) ‘Little Ice Age’ summer temperature variations: their nature and relevance to recent global warming trends. Holocene 3:367–376

    Article  Google Scholar 

  • Bradley RS (1992) When was the “Little Ice Age”? In: Mikami T (eds) Proceedings of the international symposium on the little ice age climate. Tokyo Metropolitan University, Tokyo, pp 1–4

    Google Scholar 

  • Broecker WS (2001) Was the medieval warm period global? Science 291:1497–1499

    Article  Google Scholar 

  • Buckley BM, Anchukaitis KJ, Penny D, Fletcher R, Cook ER, Sano M, Nam LC, Wichienkeeo A, Minh TT, Hong TM (2010) Climate as a contributing factor in the demise of Angkor, Cambodia. Proc Natl Acad Sci USA 107(15):6748–6752

    Google Scholar 

  • Carlson AE (2013) The younger Dryas climate event In: Elias SA (eds) The encyclopedia of quaternary science. Elsevier, Amsterdam, vol 3, pp 126–134

    Google Scholar 

  • Chauhan MS, Sharma C (1996) Pollen analysis of mid-Holocene sediments from Kumaon Himalaya. Geol Surv India Spec Publ 21:257–269

    Google Scholar 

  • Chauhan MS, Mazari RK, Rajagopalan G (2000) Vegetation and climate in upper Spiti region, Himachal Pradesh during late Holocene. Curr Sci 79(3):373–377

    Google Scholar 

  • Chen FH, Chen JH, Homes JA, Boomer I, Austin P, Gates JB, Wang NL, Brooks SJ, Zhang JW (2010) Moisture changes over the last millennium in arid central Asia: a review, synthesis and comparison with monsoon region. Quatern Sci Rev 29:1055–1068

    Article  Google Scholar 

  • Chen J, Chen F, Zhang E, Brooks SJ, Zhou A, Zhang J (2009) A 1000-year chironomid-based salinity reconstruction from varved sediments of Sugan Lake, Qaidam Basin, arid Northwest China, and its palaeoclimatic significance. Chin Sci Bull 54(20):3749–3759

    Article  Google Scholar 

  • Chen J, Wan G, Zhang DD, Chen Z, Xu J, Xiao T, Huang R (2005) The ‘Little Ice Age’ recorded by sediment chemistry in Lake Erhai, southwest China. Holocene 15:925–931

    Article  Google Scholar 

  • Chen FH, Xiaozhong H, Jiawu Z, Holmes JA, Jianhui C (2006) Humid Little Ice Age in arid central Asia documented by Bosten Lake, Xinjiang, China. Sci China (Series D) 49(12):1280–1290

    Article  Google Scholar 

  • Cheng H, Edwards RL, Broecker WS, Denton GH, Kong X (2009) Ice age terminations. Science 326:248–252

    Article  Google Scholar 

  • Chu G, Liu J, Sun Q, Lu H, Gu Z, Wang W, Liu T (2002) The ‘Mediaeval Warm Period’ drought recorded in Lake Huguangyan, tropical South China. Holocene 12:511–516

    Article  Google Scholar 

  • Clark PU, Pisias NG, Stocker TF, Weaver AJ (2002) The role of thermohaline circulation in abrupt climate change. Nature 415:863–869

    Article  Google Scholar 

  • Clingingsmith D, Williamson JG (2008) Deindustrialization in 18th and 19th century India: Mughal decline, climate shocks, and British Industrial Ascent. Explor Econ Hist 45(3):209–234

    Article  Google Scholar 

  • Crowley TJ, Lowery TS (2000) How warm was the Medieval Warm Period? Ambio J Human Environ 29:1–51

    Article  Google Scholar 

  • Datte PS, Tyagi SK, Chandrasekharan H (1991) Factors controlling stable isotope composition of rainfall in New Delhi, India. J Hydrol 128:223–236

    Article  Google Scholar 

  • Denniston RF, Gonzalez LA, Asmerom Y, Sharma RH, Reagan MK (2000) Speleothem evidence for changes in Indian summer monsoon precipitation over the last ~2300 Years. Quatern Res 53(2):196–202

    Article  Google Scholar 

  • Dormoy I, Peyron I, Combourieu NO, Goring N, Kotthoff S, Magny U, Pross J (2009) Terrestrial climate variability and seasonality changes in the Mediterranean region between 15,000 and 4000 years BP deduced from marine pollen records. Clim Past 5:615–632

    Article  Google Scholar 

  • Dykoski C, Edwards RL, Cheng H, Yuan DX, Cai YJ, Zhang ML, Lin YS, Qing JM, An ZS, Revenaugh J (2005) A high resolution absolute dated Holocene and deglacial Asian monsoon record from Dongge cave, China. Earth Planet Sci Lett 233:71–86

    Article  Google Scholar 

  • Fan ZX, Bräuning A, Yang B, Cao KF (2008) Tree ring density-based summer temperature reconstruction for the central Hengduan Mountains in southern China. Global Planet Change 65(1–2):1–11

    Google Scholar 

  • Fang K, Go X, Chen F, Liu C, Davi N, Li J, Zhao Z, Li Y (2012) Tree-ring based reconstruction of drought variability (1615–2009) in the Kongtong Mountain area, northern China. Global Planet Change 80–81:190–197

    Article  Google Scholar 

  • Fleitmann D, Burns SJ, Mangini A, Mudelsee M, Kramers J, Villa I, Neff U, Al Subbary AA, Buettner A, Hippler D, Matter A (2007) Holocene ITCZ and Indian monsoon dynamics recorded in stalagmites from Oman and Yemen (Socotra). Quat Sci Rev 26:170–188

    Article  Google Scholar 

  • Fleitmann D, Burns SJ, Neff U, Mangini A, Matter A (2003) Changing moisture sources over the last 330,000 years in Northern Oman from fluid-inclusion evidence in speleothems. Quatern Res 60:223–232

    Article  Google Scholar 

  • Fontes JC, Gasse F, Gilbert E (1996) Holocene environmental changes in lake Bangong basin (western Tibet). Part I: chronology and stable isotopes of carbonates of Holocene lacustrine core. Palaeogeogr Palaeoclimatol Palaeoecol 120:25–47

    Article  Google Scholar 

  • GNIP, http://www.iaea.org/water

  • Gadgil S (2003) The Indian monsoon and its variability. Annu Rev Earth Planet Sci 31:429–467

    Article  Google Scholar 

  • Gasse F, Arnold M, Fontes JC, Fort M, Gilbert E, Hue A, Li Bingyan, Yuangang L, Qing L, Melieres F, Van Campo E, Fubao W, Qingsong Z (1991) A 13,000-year climate record from western Tibet. Nature 353:742–745

    Article  Google Scholar 

  • Gasse F, Fontes JC, Van Campo E, Wei K (1996) Holocene environmental changes in Bangong Co basin (western Tibet). Part 4. Discussions and conclusions. Palaeogeogr Palaeoecol Palaeoclimatol 120:79–92

    Article  Google Scholar 

  • Gonfiantini R, Roche MA, Olivry JC, Fontes JC, Zuppi GM (2001) The altitude effect on the isotopic composition of tropical rains. Chem Geol 181:147–167

    Article  Google Scholar 

  • Grove JM (2001) The initiation of the “Little Ice Age” in regions round the North Atlantic. Clim Change 48(1):53–82

    Article  Google Scholar 

  • Grove RH (2007) The great El Nino of 1789–93 and its global consequences: reconstructing an extreme climate event in world environmental history. Medieval History J 10(1–2):75–98

    Google Scholar 

  • Grove JM (1988) The little ice age. Methuen, London, vol 22, pp 1–498

    Google Scholar 

  • Grove JM (2004) Little ice ages: ancient and modern, vol 1. Routledge, London, p 2

    Google Scholar 

  • Gupta A (2008) Late Quaternary vegetation and climate from temperate zone of the Kumaun Himalaya, India (with remarks on neotectonic disturbance). Acta Palaeobotanica 48(2):325–333

    Google Scholar 

  • Gupta AK, Anderson DM, Overpeck JT (2003) Abrupt changes in the Asian southwest monsoon during the Holocene and their links to the North Atlantic Ocean. Nature 421:354–357

    Article  Google Scholar 

  • Hassan FA, Stucki BR (1987) Nile floods and climatic change. In: Rampino MR, Sanders JE, Newman WS, Konigsson LK (eds) climate: history, periodicity and predictability. Van Nostrand Reinhold, NewYork, pp 37–46

    Google Scholar 

  • Hongchun LI, DeloIng GU, Tehlung KU, Stott LD, Wenji C (1998) Applications of interannual-resolution stable isotope records of speleothem: climatic changes in Beijing and Tianjin, China during the past 500 years—the δ18O record. Sci China (Series D) 41(4):362–368

    Article  Google Scholar 

  • Jing Z, Sumin W, Guishan Y, Haifeng X (2007) Younger Dryas event and cold events in early Mid-Holocene: record from the sediment of Erhai Lake. Adv Clim Change Res 3:41–44

    Google Scholar 

  • Kar R, Ranhotra PS, Bhattacharyya A, Sekar B (2002) Vegetation vis-a-vis climate and glacial fluctuations of the Gangotri glacier since the last 2000 years. Curr Sci 82:347–351

    Google Scholar 

  • Keqin D, Tandong Y (2003) Monsoon variability in the Himalayas under the condition of global warming. J Meteorol Soc Jpn 81:251–257

    Article  Google Scholar 

  • Kotlia BS, Joshi LM (2013) Neotectonic and climatic impressions in the zone of Trans Himadri Fault (THF), Kumaun Tethys Himalaya, India: A case study from palaeolake deposits. Zeitschriftfür Geomorphologie 57(3):289–303

    Google Scholar 

  • Kotlia BS, Bhalla MS, Sharma C, Rajagopalan G, Ramesh R, Chauhan MS, Mathur PD, Bhandari S, Chacko T (1997) Palaeoclimatic conditions in the upper Pleistocene and Holocene Bhimtal-Naukuchiatal lake basin in south-central Kumaun, North India. Palaeogeogr Palaeoclimatol Palaeoecol 130(1–4):307–322

    Article  Google Scholar 

  • Kotlia BS, Sanwal J, Phartiyal B, Joshi LM, Trivedi A, Sharma C (2010) Late Quaternary climatic changes in the eastern Kumaun Himalaya, India, as deduced from multi-proxy studies. Quatern Int 213:44–55

    Article  Google Scholar 

  • Kotlia BS, Ahmad SM, Zhao JX, Raza W, Collerson KD, Joshi LM, Sanwal J (2012) Climatic fluctuations during the LIA and post-LIA in the Kumaun Lesser Himalaya, India: evidence from a 400 yr old stalagmite record. Quatern Int 263:129–138

    Article  Google Scholar 

  • Kotlia BS, Singh AK, Joshi LM, Dhaila BS (2015) Precipitation variability in the Indian Central Himalaya during last ca. 4,000 years inferred from a speleothem record: impact of Indian Summer Monsoon (ISM) and Westerlies. Quatern Int 371:244–253

    Article  Google Scholar 

  • Kotlia BS, Singh AK, Sanwal J, Raza W, Ahmad SM, Joshi LM, Sirohi M, Sharma AK, Sagar N (2016) Stalagmite inferred high resolution climatic changes through Pleistocene-Holocene transition in Northwest Indian Himalaya. J Earth Sci Clim Change 7:338

    Google Scholar 

  • Kotlia BS, Singh AK, Zhao Jian-Xin, Duan W, Tan M, Sharma AK, Raza W (2017) Stalagmite based high resolution precipitation variability for past four centuries in the Indian Central Himalaya: Chulerasim cave re-visited and data re-interpretation. Quat Int 444(A):35–43

    Google Scholar 

  • Ku TL, Li HC (1998) Speleothems as high-resolution paleoenvironment archives: Records from northeastern China. J Earth Syst Sci 107(4):321–330

    Google Scholar 

  • Lamb HH (1972) The cold little ice age climate of about 1550 to 1800. Climate: present, past and future. Methuen, London, p 107

    Google Scholar 

  • Ledru M-P, Jomelli V, Samaniego P, Vuille M, Hidalgo S, Herrera M, Ceron C (2013) The medieval climate anomaly and the little ice age in the eastern Ecuadorian Andes. Clim Past 9:307–321

    Article  Google Scholar 

  • Leipe C, Demske D, Tarasov PE, HIMPAC Project Members (2014) A Holocene pollen record from the northwestern Himalayan lake Tso Moriri: implications for palaeoclimatic and archaeological research. Quat Int 348:93–112

    Google Scholar 

  • Liang F, Brook GA, Kotlia BS, Railsback LB, Hardt B, Cheng H, Edwards RL, Kandasamy S (2015) Panigarh cave stalagmite evidence of climate change in the Indian Central Himalaya since AD 1256: Monsoon breaks and winter southern jet depressions. Quatern Sci Rev 124:145–161

    Article  Google Scholar 

  • Lister GS, Kelts K, Chen KZ, Jun-Qing Yu, Niessen F (1991) Lake Qinghai, China closed-basin lake levels and the oxygen isotope record for ostracoda since the latest Pleistocene. Palaeogeogr Palaeoclimatol Palaeoecol 84:141–162

    Article  Google Scholar 

  • Liu KB, Yao ZJ, Thompson LG (1998) A pollen record of Holocene climatic changes from the Dunde ice cap. Qinghai-Tibetan Plateau Geol 26:135–138

    Google Scholar 

  • Lone MA, Ahmad SM, Dung NC, Shen CC, Raza W (2014) Speleothem based 1000-year high resolution record of Indian monsoon variability during the last deglaciation. Palaeogeogr Palaeoclimatol Palaeoecol 395:1–8

    Article  Google Scholar 

  • Ma L, Wu J, Yu H, Zeng H, Abuduwaili J (2011) The Medieval warm period and the little ice age from a sediment record of Lake Ebinur, northwest China. Boreas 40(3):518–524

    Article  Google Scholar 

  • MacDonald G (2011) Potential influence of the Pacific Ocean on the Indian summer monsoon and Harappan decline. Quatern Int 229:140–148

    Article  Google Scholar 

  • Madella M, Fuller DQ (2006) Palaeoecology and the Harappan civilisation of south Asia: a reconsideration. Quatern Sci Rev 25:1283–1301

    Article  Google Scholar 

  • Mann ME, Bradley RS, Hughes MK (1998) Global-scale temperature patterns and climate forcing over the past six centuries. Nature 392:779–787

    Article  Google Scholar 

  • Mann ME, Zhang Z, Rutherford S, Bradley RS, Hughes MK, Shindell D, Ammann C, Faluvegi G, Ni F (2009) Global signatures and dynamical origins of the little ice age and medieval climate anomaly. Science 326:1256–1260

    Article  Google Scholar 

  • Mazari RK, Bagati TN, Chauhan MS, Rajagopalan G (1995) Palaeoclimatic records of last 2000 years in Trans-Himalaya Lahaul-Spiti region. In: Proceedings Nagoya IGBP-Pages/REP-II symposium, pp 262–268

    Google Scholar 

  • Mishra PK, Anoop A, Schettler G, Prasad S, Jehangi A, Menzel P, Naumann R, Yousuf AR, Basavaiah N, Deenadayalan K, Wiesner MG, Gaye B (2015) Reconstructed late Quaternary hydrological changes from Lake Tso Moriri, NW Himalaya. Quatern Int 371:76–86

    Article  Google Scholar 

  • Ó Gráda C (2007) Making famine history. J Econ Lit 65:5–38

    Google Scholar 

  • Orland IJ, Bar-Matthews M, Kita NT, Ayalon A, Matthews A, Valley JW (2009) Climate deterioration in the eastern Mediterranean as revealed by ion microprobe analysis of a speleothem that grew from 2.2 to 0.9 ka in Soreq Cave, Israel. Quat Res 71:27–35

    Article  Google Scholar 

  • Pant GB (2003) Long-term climate variability and change over monsoon Asia. J Indian Geophys Union 7(3):125–134

    Google Scholar 

  • Paulsen DE, Li HC, Ku TL (2003) Climate variability in central China over the last 1270 years revealed by high-resolution stalagmite records. Quatern Sci Rev 22:691–701

    Article  Google Scholar 

  • Pederson N, Jacoby GC, D’Arrigo RD, Cook ER, Buckley B (2001) Hydrometeorological reconstructions for Northeastern Mongolia derived from tree rings: 1651–1995. J Clim 14:872–881

    Article  Google Scholar 

  • Phadtare NR (2000) Sharp decrease in summer monsoon strength 4000-3500 cal yr B.P. in the central higher Himalaya of India based on pollen evidence from alpine peat. Quatern Res 53:122–129

    Article  Google Scholar 

  • Phadtare NR, Pant RK (2005) High resolution studies on the Holocene climate changes and monsoon variability in Kumaun-Garhwal Himalaya. DST project report, pp 42

    Google Scholar 

  • Prasad VS, Hayashi T (2007) Active, weak and break spells in the Indian summer monsoon. Meteorol Atmos Phys 95:53–61

    Article  Google Scholar 

  • Raghavan K (1973) Break-monsoon over India. Mon Weather Rev 101:33–43

    Article  Google Scholar 

  • Rawat S, Gupta AK, Srivastava P, Sangode SJ, Nainwal HC (2015) A 13,000 year record of environmental magnetic variations in the lake and peat deposits from the Chandra valley, Lahaul: Implications to Holocene monsoonal variability in the NW Himalaya. Palaeogeogr Palaeoclimatol Palaeoecol 440:116–127

    Article  Google Scholar 

  • Rawat S, Phadtare NR, Sangode SJ (2012) The younger Dryas cold event in NW Himalaya based on pollen record from the Chandra Tal area in Himachal Pradesh, India. Curr Sci 102(8):1193–1198

    Google Scholar 

  • Rühland K, Phadtare NR, Pant RK, Sangode SJ, Smol JP (2006) Accelerated melting of Himalayan snow and ice triggers pronounced changes in a valley peatland from northern India. Geophys Res Lett 33:L15709

    Article  Google Scholar 

  • Sanwal J, Kotlia BS, Rajendran C, Ahmad SM, Rajendran K, Sandiford M (2013) Climatic variability in central Indian Himalaya during the last 1800 years: evidence from a high resolution speleothem record. Quatern Int 304:183–192

    Article  Google Scholar 

  • Sarkar A, Ramesh R, Somayajulu BLK, Agnihotri A, Jull AJT, Burr GS (2000) High resolution Holocene monsoon record from the eastern Arabian Sea. Earth Planet Sci Lett 177:209–218

    Article  Google Scholar 

  • Shakun JD, Carlson AE (2010) A global perspective on last glacial maximum to Holocene climate change. Quatern Sci Rev 29:1801–1816

    Article  Google Scholar 

  • Sharma S (1993) The 1837–38 famine in Uttar Pradesh: Some dimensions of popular action. Indian Econ Social Hist Rev 30(3):337–372

    Article  Google Scholar 

  • Shekhar MS, Chand H, Kumar S, Srinivasan K, Ganju A (2010) Climate change studies in the western Himalaya. Ann Glaciol 51(54):105–112

    Article  Google Scholar 

  • Singh J, Park W-K, Yadav RR (2006) Tree-ring-based hydrological records for western Himalaya, India, since AD 1560. Clim Dyn 26:295–303

    Article  Google Scholar 

  • Sinha A, Berkelhammer M, Stott L, Mudelsee M, Cheng H, Biswas J (2011) The leading mode of Indian Summer Monsoon precipitation variability during the last millennium. Geophys Res Lett 38:L15703

    Article  Google Scholar 

  • Sinha A, Cannariato KG, Stott LD, Li HC, You CF, Cheng H, Edwards RL, Singh IB (2005) Variability of Southwest Indian summer monsoon precipitation during the Bølling–Ållerød. Geology 33:813–816

    Article  Google Scholar 

  • Sorrel P, Oberhänsli H, Boroffka N, Nourgaliev D, Dulski P, Röhl U (2007) Control of wind strength and frequency in the Aral Sea basin during the late Holocene. Quatern Res 67:371–382

    Article  Google Scholar 

  • Thompson LG, Yao T, Mosley-Thompson E, Davis ME, Henderson KA, Lin PN (2000) High-resolution millennial record of the South Asian monsoon from Himalayan ice cores. Science 289:1916–1919

    Article  Google Scholar 

  • Tripathi JK, Bock B, Rajamani V, Eisenhauer A (2004) Is river Ghaggar, Saraswati? geochemical constraints. Curr Sci 87(8):1141–1145

    Google Scholar 

  • Van Campo E, Gasse F (1993) Pollen and diatom-inferred climatic and hydrological changes in Sumxi Co basin (Western Tibet) since 13,000 yr B.P. Quatern Res 39:300–313

    Article  Google Scholar 

  • Van Campo E, Cour P, Sixuan H (1996) Holocene environmental changes in Bangong Co basin (Western Tibet). Part 2: the pollen record. Palaeogeogr Palaeoclimatol Palaeoecol 120:49–62

    Article  Google Scholar 

  • von Rad U, Michels KH, Schulz H, Berger WH, Sirocko F (1999) A 5000-yr record of climate change in varved sediments from the oxygen minimum zone off Pakistan, northeastern Arabian Sea. Quatern Res 51:39–53

    Article  Google Scholar 

  • Wang YJ, Cheng H, Edwards RL, He YQ, Kong XG, An ZS, Wu JY, Kelly MJ, Dykoski CA, Li XD (2005) The Holocene Asian monsoon: links to solar changes and North Atlantic climate. Science 308:854–857

    Article  Google Scholar 

  • Weiss H, Courty MA, Wetterstrom W, Guichard F, Senior L, Meadow R, Curnow A (1993) The genesis and collapse of third millennium North Mesopotamian civilization. Science 261:995–1004

    Article  Google Scholar 

  • Wu JL, Liu JJ, Wang SM (2004) Climatic change record from stable isotopes in Lake Aibi, Xinjiang during the past 1500 years. Quatern Sci 24:585–590

    Google Scholar 

  • Wu XD, Li ZY, Sun L (1988) A preliminary study on the climatic change of the Hengduan Mountains area since 1600 A.D. Adv Atmos Sci 5(4):437–443

    Google Scholar 

  • Wünnemann B, Demske D, Tarasov P, Kotlia BS, Reinhardt C, Bloemendal J, Diekmann B, Hartmann K, Krois J, Riedel F, Arya N (2010) Hydrological evolution during the last 15 kyr in the Tso Kar lake basin (Ladakh, India), derived from geomorphological, sedimentological and palynological records. Quatern Sci Rev 29:1138–1155

    Article  Google Scholar 

  • Yadav RR, Singh J (2002) Tree-ring-based spring temperature patterns over the past four centuries in western Himalaya. Quatern Res 57:299–305

    Article  Google Scholar 

  • Yadav RR, Misra KG, Yadava AK, Kotlia BS, Misra S (2015) Tree-ring footprints of drought variability in last ~300 years over Kumaun Himalaya, India and its relationship with crop productivity. Quatern Sci Rev 117:113–123

    Article  Google Scholar 

  • Yadava MG, Ramesh R (2006) Stable oxygen and carbon isotope variations as monsoon proxies: a comparative study of speleothems from four different locations in India. J Geol Soc India 68:461–475

    Google Scholar 

  • Yan H, Sun L, Oppo DW, Wang Y, Liu Z, Xie Z, Liu X, Cheng W (2011) South China Sea hydrological changes and Pacific Walker Circulation variations over the last millennium. Nat Commun 2:293

    Article  Google Scholar 

  • Yang B, Brauning A, Shi Y (2003) Late Holocene temperature fluctuations on the Tibetan Plateau. Quatern Sci Rev 22:2335–2344

    Article  Google Scholar 

  • Zhang J, Jin M, Chen F, Battarbee RW, Henderson G (2003) High-resolution precipitation variations in the Northeast Tibetan Plateau over the last 800 years documented by sediment cores of Qinghai Lake. Chin Sci Bull 48(14):1451–1456

    Article  Google Scholar 

  • Zhang Q, Kang S, Kaspari S, Li C, Qin D, Mayewski PA, Hou S (2009) Rare earth elements in an ice core from Mt. Everest: Seasonal variations and potential sources. Atmos Res 94:300–312

    Article  Google Scholar 

  • Zhao Y, Yu Z, Liu X, Zhao C, Chen F, Zhang K (2010) Late Holocene vegetation and climate oscillations in the Qaidam basin of the northeastern Tibetan Plateau. Quatern Res 73:59–69

    Article  Google Scholar 

  • Zheng J, Xiao L, Fang X, Hao Z, Ge Q, Li B (2014) How climate change impacted the collapse of the Ming Dynasty. Clim Change 127:169–182

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anoop Kumar Singh .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, A.K. (2018). Summary and Conclusion. In: High Resolution Palaeoclimatic Changes in Selected Sectors of the Indian Himalaya by Using Speleothems. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-73597-9_5

Download citation

Publish with us

Policies and ethics