Advertisement

Speleothems and Climate

  • Anoop Kumar SinghEmail author
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

The Karst topography describes the dissolution of underlying soluble rocks by surface water or ground water. This is commonly found in carbonate terrain (limestone and dolomite) in mountainous regions. The rain water infiltrates through the cracks of the rocks in the vertical manner until it reaches the water table and thereafter, it moves horizontally below the surface of water table. The conditions of this process are, (1) exposure of thick limestone cover the ground surface, and (2) limestone cover overlain by non soluble rocks. The discernible character of the karst topography is simply known as caves and sinkholes.

References

  1. Ayliffe LK, Marianelli PC, Moriarty KC, Wells RT, McCulloch MT, Mortimer GE, Hellstrom JC (1998) 500 ka precipitation record from southeastern Australia: evidence for interglacial relative aridity. Geology 26:147–150CrossRefGoogle Scholar
  2. Baker A, Smart PL (1995) Recent flowstone growth rates: field measurements in comparison to theoretical predictions. Chem Geol 122:121–128CrossRefGoogle Scholar
  3. Baker A, Genty D, Dreybrodt W, Barnes WL, Mockler NJ, Grapes J (1998) Testing theoretically predicted stalagmite growth rate with recent annually laminated samples: implications for past stalagmite deposition. Geochim Cosmochim Acta 62:393–404CrossRefGoogle Scholar
  4. Baker A, Mockler NJ, Barnes WL (1999) Fluorescence intensity variations of speleothem-forming groundwaters: implications for paleoclimate reconstruction. Water Resour Res 35(2):407–413CrossRefGoogle Scholar
  5. Baker A, Smith CL, Jex C, Fairchild IJ, Genty D, Fuller L (2008) Annually laminated speleothems: a review. Int J Speleol 37:193–206CrossRefGoogle Scholar
  6. Baldini JUL (2001) Morphologic and dimensional linkage between recently deposited speleothems and drip water from Browns Folly Mine, Wiltshire, England. J Cave Karst Stud 63:83–90Google Scholar
  7. Baldini JUL, McDermott F, Hoffmann DL, Richard DA, Clipson N (2008) Very high-frequency and seasonal cave atmosphere PCO2 variability: Implications for stalagmite growth and oxygen isotope-based paleoclimate records. Earth Planet Sci Lett 272:118–129CrossRefGoogle Scholar
  8. Bar-Matthews M, Ayalon A, Matthews A, Sass E, Halicz L (1996) Carbon and oxygen isotope study of the active water-carbonate system in a karstic Mediterranean cave: implications for palaeoclimate research in semiarid regions. Geochem et Cosmochim Acta 60:337–347CrossRefGoogle Scholar
  9. Berkelhammer M, Sinha A, Stott L, Cheng H, Pausata FSR, Yoshimura K (2012) An abrupt shift in the Indian monsoon 4000 years ago. In: Giosan L, Fuller DQ, Nicoll K, Flad RK, Clift PD (eds) Climates, landscapes, and civilizations, American Geophysical Union, vol 198, pp 75–87Google Scholar
  10. Bezek M, Gregorič A, Kávási N, Vaupotič J (2012) Diurnal and seasonal variations of concentration and size distribution of nano aerosols (10–1100 nm) enclosing radon decay products in the Postojna Cave, Slovenia. Radiat Prot Dosim 152:174–178CrossRefGoogle Scholar
  11. Boutton TW (1996) Stable carbon isotope rations of soil organic matter and their use as indicators of vegetation and climate change. In: Yamasaki S, Boutton TW (eds) Mass spectrometry of soils. Marcel Dekker, New York, pp 47–81Google Scholar
  12. Buhmann D, Dreybrodt W (1985) The kinetics of calcite dissolution and precipitation in geologically relevant situations of karst areas-open system. Chem Geol 48:189–211CrossRefGoogle Scholar
  13. Cai YJ, Tan LC, Cheng H, An ZS, Edwards RL, Kelly MJ, Kong XG, Wang XF (2010) The variation of summer monsoon precipitation in central China since the last deglaciation. Earth Planet Sci Lett 291:21–31CrossRefGoogle Scholar
  14. Cai YJ, Zhang HW, Cheng H, An ZS, Edwards RL, Wang XF, Tan LC, Liang FY, Wang J (2012) The Holocene Indian monsoon variability over the southern Tibetan Plateau and its teleconnections. Earth Planet Sci Lett 335:135–144CrossRefGoogle Scholar
  15. Cerling TE (1984) The stable isotope composition of modern soil carbonate and its relationship to climate. Earth Planet Sci Lett 71:229–240CrossRefGoogle Scholar
  16. Cerling TE, Quade J (1993) Stable carbone and oxygen isotopes in soil carbonates. In: Swart PK, Lohmann KC, McKenzie J, Savin S (eds) Climate change in continental isotopic records, American Geophysical Union, pp 217–231Google Scholar
  17. Cosford J, Qing HR, Eglington B, Mattey D, Yuan DX, Zhang ML, Cheng H (2008) East Asian monsoon variability since the Mid-Holocene recorded in a high-resolution, absolute-dated aragonite speleothem from eastern China. Earth and Planet Sci Lett 275:296–307CrossRefGoogle Scholar
  18. Curl RL (1973) Minimum diameter stalagmites. Bull Natl Speleol Soc 35:1–9Google Scholar
  19. Dansgaard W (1964) Stable isotopes in precipitation. Tellus 16:436–468CrossRefGoogle Scholar
  20. Deines P (1986) The isotopic composition of reduced organic carbon. In: Fritz P, Fontes JC (eds) Handbook of environmental geochemistry: the terrestrial environment, Amsterdam, pp 331–406Google Scholar
  21. Denniston RF, Gonzalez LA, Asmerom Y, Sharma RH, Reagan MK (2000) Speleothem evidence for changes in Indian summer monsoon precipitation over the last ~2300 years. Quat Res 53(2):196–202CrossRefGoogle Scholar
  22. Dong JG, Wang YJ, Cheng H, Hardt B, Edwards RL, Kong XG, Wu JY, Chen ST, Liu DB, Jiang XY, Zhao K (2010) A high-resolution stalagmite record of the Holocene East Asian Monsoon from Mount Shennongjia, central China. Holocene 20:257–264CrossRefGoogle Scholar
  23. Dorale JA, González LA, Reagan MK, Pickett DA, Murrell MT (1992) A high resolution record of Holocene climate change in speleothem calcite from Cold Water Cave northeast Iowa. Science 258:1626–1630CrossRefGoogle Scholar
  24. Dorale JA, Edwards RL, Ito E, Gonzalez LA (1998) Climate and vegetation history of the midcontinent from 75 to 25 ka: a speleothem record from Crevice Cave. Missouri, USA Science 282:1871–1874Google Scholar
  25. Dreybrodt W (1988) Processes in Karst Systems: physics, chemistry, and geology. Springer, Berlin, pp 1–288Google Scholar
  26. Dreybrodt W (1996) Principles of early development of karst conduits under natural and man-made conditions revealed by mathematical analysis of numerical models. Water Resour Res 32:2923–2935CrossRefGoogle Scholar
  27. Dreybrodt W (1999) Chemical kinetics, speleothem growth and climate. Boreas 28:347–356CrossRefGoogle Scholar
  28. Dreybrodt W (2008) Evolution of the isotopic composition of carbon and oxygen in a calcite precipitating H2O-CO2-CaCO3 solution and the related isotopic composition of calcite in stalagmites. Geochim Cosmochim Acta 72:4712–4724CrossRefGoogle Scholar
  29. Drysdale RN, Zanchetta G, Hellstrom JC, Fallick AE, Zhao JX (2005) Stalagmite evidence for the onset of the last interglacial in Southern Europe at 129 ± 1 ka. Geophys Res Lett 32:L24708CrossRefGoogle Scholar
  30. Duan W, Kotlia BS, Tan M (2013) Mineral composition and structure of the stalagmite laminae from Chulerasim cave, Indian Himalaya and the significance for palaeoclimatic reconstruction. Quat Int 298:93–97CrossRefGoogle Scholar
  31. Dutt S, Gupta AK, Clemens SC, Cheng H, Singh RK, Kathayat G, Edwards RL (2015) Abrupt changes in Indian summer monsoon strength during 33,800 to 5500 years B.P. Geophys Res Lett 42:5526–5532CrossRefGoogle Scholar
  32. Dykoski C, Edwards RL, Cheng H, Yuan DX, Cai YJ, Zhang ML, Lin YS, Qing JM, An ZS, Revenaugh J (2005) A high resolution absolute dated Holocene and deglacial Asian monsoon record from Dongge cave, China. Earth Planet Sci Lett 233:71–86CrossRefGoogle Scholar
  33. Edwards RL, Chen JH, Wasserburg GJ (1987) 238U–234U–230Th–232Th Systematics and the precise measurement of time over the past 5,00,000 years. Earth and Planet Sci Lett 81:175–192CrossRefGoogle Scholar
  34. Fairchild IJ, Borsato A, Tooth AF, Frisia S, Hawkesworth CJ, Huang Y, McDermott F, Spiro B (2000) Controls on trace element (Sr-Mg) compositions of carbonate cave waters: implications for speleothem climatic records. Chem Geol 166:255–269CrossRefGoogle Scholar
  35. Fairchild I, Baker A, Borsato A, Frisia S, Hinton R, McDermott F, Tooth A (2001) Annual to sub-annual resolution of multiple trace-element trends in speleothems. J Geol Soc 158:831–841CrossRefGoogle Scholar
  36. Fleitmann D, Burns SJ, Neff U, Mangini A, Matter A (2003) Changing moisture sources over the last 330,000 years in Northern Oman from fluid-inclusion evidence in speleothems. Quat Res 60:223–232CrossRefGoogle Scholar
  37. Fleitmann D, Burns SJ, Neff U, Mudelsee M, Mangini A, Matter A (2004) Palaeoclimatic interpretation of high resolution oxygen isotope profiles derived from annually laminated speleothems from Southern Oman. Quat Sci Rev 23:935–945CrossRefGoogle Scholar
  38. Fleitmann D, Burns SJ, Mangini A, Mudelsee M, Kramers J, Villa I, Neff U, Al Subbary AA, Buettner A, Hippler D, Matter A (2007) Holocene ITCZ and Indian monsoon dynamics recorded in stalagmites from Oman and Yemen (Socotra). Quat Sci Rev 26:170–188CrossRefGoogle Scholar
  39. Ford DC, Williams PW (1989) Karst geomorphology and hydrology. Academic Division of Unwin Hyman Ltd, London, p 601CrossRefGoogle Scholar
  40. Forti P (2009) State of the art in the speleological sciences. In: Proceeding XV International speleological congress. Kerrville Texas, vol 1, pp 26–31Google Scholar
  41. Franke HW (1965) The theory behind stalagmite shapes. Stud Speleol 1:89–95Google Scholar
  42. Franke HW (1975) Sub-minimum diameter stalagmites. Bull Natl Speleol Soc 37:17–18Google Scholar
  43. Frisia S, Borsato A, Fairchild IJ, McDermott F (2000) Calcite fabrics, growth mechanisms, and environments of formation in speleothems from the Italian Alps and southwestern Ireland. J Sediment Res 70:1183–1196CrossRefGoogle Scholar
  44. Frisia S, Borsato A, Fairchild IJ, Mcdermott F, Selmo EM (2002) Aragonite-calcite relationships in speleothems (grotte de clamouse, France): environment, fabrics, and carbonate geochemistry. J Sediment Res 72:687–699CrossRefGoogle Scholar
  45. Gams I (1974) Concentration of CO2 in the caves in relation to the air circulation (in the cave of the Postojna Cave). Acta Carsologica 6:183–192Google Scholar
  46. Gams I (1981) Contribution to morphometrics of stalagmites. In: Proceedings of the 8th international congress of speleology, Bowling Green, Kentucky, pp 276–278Google Scholar
  47. Gascoyne M (1992) Palaeoclimate determination from cave calcite deposits. Quat Sci Rev 11:609–632CrossRefGoogle Scholar
  48. Genty D, Massault M (1999) Carbon transfer dynamics from bomb-14C and δ13C time series of a laminated and stalagmite from SW France-modelling and comparison with other stalagmite records. Geochim Cosmochim Acta 63(10):1537–1548CrossRefGoogle Scholar
  49. Genty D, Quinif Y (1996) Annually laminated sequences in the internal structure of some Belgian stalagmites; importance for paleoclimatology. J Sediment Res 66(1):275–288Google Scholar
  50. Genty D, Massault M, Baker A, Vokal B, Proctor CJ (1999) Reconstitution of bomb 14C time history recorded in four modern stalagmites by AMS measurements: importance for carbon transfer dynamics. In: 8th international conference on AMS Vienna, p 93Google Scholar
  51. Genty D, Baker A, Vokal B (2001) Intra and inter-annual growth rate of modern stalagmites. Chem Geol 176:191–212CrossRefGoogle Scholar
  52. Genty D, Blamart D, Ghaleb B, Plagnes V, Causse CH, Bakalowicz M, Zouari K, Chkir N, Hellstrom J, Wainer K, Bourge F (2006) Timing and dynamics of the last deglaciation from European and North African δ13C stalagmite profiles comparison with Chinese and South Hemisphere stalagmites. Quat Sci Rev 25:2118–2142CrossRefGoogle Scholar
  53. Goede A, McCulloch M, McDermott F, Hawkesworth C (1998) Aeolian contribution to strontium and strontium isotope variations in a Tasmanian speleothem. Chem Geol 149:37–50CrossRefGoogle Scholar
  54. Goldstein SJ, Stirling CH (2003) Techniques for measuring Uranium-series nuclides: 1992-(2002). In: Bourdon B, Henderson GM, Lundstrom CC Turner SP (eds) Uranium-series geochemistry. Reviews in Mineralogy and Geochemistry, vol 52, pp 23–57Google Scholar
  55. González LA, Carpenter SJ, Lohmann KC (1992) Inorganic calcite morphology-roles of fluid chemistry and fluid-flow. J Sediment Petrol 62:382–399Google Scholar
  56. Harmon R, Schwarz H, Gascoyne M, Hess J, Ford D (2004) Studies of cave sediments. Physical and chemical records of palaeoclimate: Palaeoclimate information from Speleothems: The Present as a guide to the past, Kluwer, New York, pp 199–226Google Scholar
  57. Hellstrom J, McCulloch MT, Stone J (1998) A detailed 31,000 year record of climate and vegetation change from the isotope geochemistry of two New Zealand speleothems. Quat Res 50:167–178CrossRefGoogle Scholar
  58. Hesterberg R, Siegenthaler U (1991) Production and stable isotopic composition of CO2 in a soil near Bern, Switzerland, Tellus 43B:197–205Google Scholar
  59. Hendy CH (1969) The use of C-14 in the study of cave processes. In: Proceedings of the Xllth nobel symposium, Uppsala, University of Uppsala, pp 419–443Google Scholar
  60. Hendy CH (1971) The isotopic geochemistry of speleothems-I. The calculation of the effects of different modes of formation on the isotopic composition of speleothems and their applicability as paleoclimatic indicators. Geochim Cosmochim Acta 35:801–824CrossRefGoogle Scholar
  61. Hendy CH, Wilson AT (1968) Palaeodimatic data from speleothems. Nature 216:48–51CrossRefGoogle Scholar
  62. Hill C, Forti P (1997) Cave minerals of the world, 2nd edn. National Speleological Society, pp 1–463Google Scholar
  63. Hou S, Qin D, Zhang D, Kang S, Mayewski PA, Wake CP (2003) A 154a highresolution ammonium record from the Rongbuk Glacier, north slope of Mt. Qomolangma (Everest) Tibet-Himalayas region. Atmos Environ 37:721–729CrossRefGoogle Scholar
  64. Hu CY, Henderson GM, Huang J, Xie SC, Sun Y, Johnson KR (2008) Quantification of Holocene Asian monsoon rainfall from spatially separated cave records. Earth Planet Sci Lett 266:221–232CrossRefGoogle Scholar
  65. James JM (1997) Minor, trace and ultra-trace constituents of speleothems. In: cave minerals of the world. In: Hill CA, Forti P (eds) National Speleological Society, pp 236–237Google Scholar
  66. Jennings JN (1985) Karst Geomorphology. Basil Blackwell, Oxford p, p 293Google Scholar
  67. Jiang XY, He YQ, Shen C-C, Kong XG, Li ZZ, Chang Y-W (2012) Stalagmite inferred Holocene precipitation in northern Guizhou Province, China, and asynchronous termination of the climatic optimum in the Asian monsoon territory. Chin Sci Bull 57:795–801CrossRefGoogle Scholar
  68. Johnson KR, Hu C, Belshaw NS, Henderson GM (2006) Seasonal trace-element and stable-isotope variations in a Chinese speleothem: The potential for high-resolution. Earth Planet Sci Lett 244:394–407CrossRefGoogle Scholar
  69. Jones B, Kahle CF (1993) Morphology relationships, and origin of fiber and dendrite calcite crystals. J Sediment Petrol 63:1018–1031Google Scholar
  70. Kathayat G, Cheng H, Sinha A, Spotl C, Edwards RL, Lui W, Zhang H, Cai Y, Breitenbach SFM (2016) Indian monsoon variability on millennial-orbital timescales over the past 282,000 years. Sci Rep 10:20–20Google Scholar
  71. Kaufmann G (2003) Stalagmite growth and palaeo-climate: the numerical perspective. Earth Planet Sci Lett 214:251–266CrossRefGoogle Scholar
  72. Kelly MJ, Edwards RL, Cheng H, Yuan DX, Cai Y, Zhang ML, Lin YS, An ZS (2006) High resolution characterization of the Asian Monsoon between 146,000 and 99,000 years B.P. from Dongge Cave, China. Palaeogeogr Palaeoclim Palaeoecol 236:20–38CrossRefGoogle Scholar
  73. Kendall AC (1993) Columnar calcite in speleothems-discussion. J Sediment Petrol 63(3):550–552CrossRefGoogle Scholar
  74. Kotlia BS, Ahmad SM, Zhao JX, Raza W, Collerson KD, Joshi LM, Sanwal J (2012) Climatic fluctuations during the LIA and post-LIA in the Kumaun Lesser Himalaya, India: evidence from a 400 yr old stalagmite record. Quat Int 263:129–138CrossRefGoogle Scholar
  75. Kotlia BS, Singh AK, Joshi LM, Dhaila BS (2015) Precipitation variability in the Indian Central Himalaya during last ca. 4000 years inferred from a speleothem record: impact of Indian Summer Monsoon (ISM) and Westerlies. Quat Int 371:244–253CrossRefGoogle Scholar
  76. Kotlia BS, Singh AK, Sanwal J, Raza W, Ahmad SM, Joshi LM, Sirohi M, Sharma AK, Sagar N (2016) Stalagmite inferred high resolution climatic changes through Pleistocene- Holocene transition in Northwest Indian Himalaya. J Earth Sci Clim Change 7:338Google Scholar
  77. Ku TL, Li HC (1998) Speleothems as high-resolution paleoenvironment archives: records from northeastern China. J Earth Syst Sci 107(4):321–330Google Scholar
  78. Laskar AH, Yadava MG, Ramesh R, Polyak VJ, Asmerom Y (2013) A 4 kyr stalagmite oxygen isotopic record of the past Indian Summer Monsoon in the Andaman Islands. Geochem Geophys Geosyst 14(9):3555–3566CrossRefGoogle Scholar
  79. Lauritzen SE (1995) High-resolution paleotemperature proxy record for the Last Interglaciation based on Norwegian speleothems. Quat Res 43:133–146CrossRefGoogle Scholar
  80. Li W-X, Lundberg J, Dickin AP, Ford DC, Schwarcz HP, McNutt R, Williams D (1989) High precision mass-spectrometric uranium-series dating of cave deposits and implication for palaeoclimate studies. Nature 339:334–336CrossRefGoogle Scholar
  81. Liang F, Brook GA, Kotlia BS, Railsback LB, Hardt B, Cheng H, Edwards RL, Kandasamy S (2015) Panigarh cave stalagmite evidence of climate change in the Indian Central Himalaya since AD 1256: monsoon breaks and winter southern jet depressions. Quat Sci Rev 124:145–161CrossRefGoogle Scholar
  82. Lone MA, Ahmad SM, Dung NC, Shen CC, Raza W (2014) Speleothem based 1000-year high resolution record of Indian monsoon variability during the last deglaciation. Palaeogeogr Palaeoclim Palaeoecol 395:1–8CrossRefGoogle Scholar
  83. Longman MW, Brownlee DN (1980) Characteristics of karst topography, Palawan, Philippines. Z für Geomorphol 24:299–317Google Scholar
  84. Mangini A, Verdes P, Spötl C, Scholz D, Vollweiler N, Kromer B (2007) Persistent influence of the North Atlantic hydrography on Central European winter temperature during the last 9,000 years. Geophys Res Lett 34:L02704CrossRefGoogle Scholar
  85. McDermott F (2004) Palaeo-climate reconstruction from stable isotope variations in speleothems. Quat Sci Rev 23:901–918CrossRefGoogle Scholar
  86. McDermott F, Frisia S, Huang Y, Longinelli A, Spiro B, Heaton THE, Hawkesworth CJ, Borsato A, Keppens E, Fairchild IJ, VanderBorg K, Verheyden S, Selmo E (1999) Holocene climate variability in Europe: evidence from δ18O and textural variations in speleothems. Quat Sci Rev 18:1021–1038CrossRefGoogle Scholar
  87. McDermott F, Schwarcz HP, Rowe PJ (2006) Isotopes in speleothems. In: Leng MJ (eds) Isot Palaeoenviron Res, Springer 10:185–226Google Scholar
  88. Moerrman JW, Cobb KM, Adkins JF, Sodemann H, Clark B, Tuen AA (2013) Diurnal to interannual rainfall δ18O variations in northern Borneo driven by regional hydrology. Earth and Planetary Science Letters 369–370:108–119CrossRefGoogle Scholar
  89. Neff U, Burns SJ, Mangini A, Mudelsee M, Fleitmann D, Matter A (2001) Strong coherence between solar variability and the monsoon in Oman between 9 and 6 kyr ago. Nature 411:290–293CrossRefGoogle Scholar
  90. Niggemann S, Mangini A, Richter DK, Wurth G (2003) A paleoclimate record of the last 17,600 years in stalagmites from the B7 cave, Sauerland, Germany. Quat Sci Rev 22:555–567CrossRefGoogle Scholar
  91. O’Neil JR, Clayton RN, Mayeda TK (1969) Oxygen isotope fractionation in divalent metal carbonates. J Chem Phys 51:5547–5558CrossRefGoogle Scholar
  92. Paulsen DE, Li HC, Ku TL (2003) Climate variability in central China over the last 1270 years revealed by high-resolution stalagmite records. Quat Sci Rev 22:691–701CrossRefGoogle Scholar
  93. Plummer LN, Wigley TML, Parkhurst DL (1978) The kinetics of calcite dissolution in CO2-water systems at 5 to 60 ℃ and 0.0 to 1.0 atm CO2. Am J Sci 278:179–216CrossRefGoogle Scholar
  94. Polyak VJ, Asmeron Y (2001) Late Holocene climate and cultural changes in the Southwestern United States. Science 294:148–151CrossRefGoogle Scholar
  95. Proctor CJ, Baker A, Barnes WL, Gilmour MA (2000) A thousand year speleothem proxy record of North Atlantic climate from Scotland. Clim Dyn 16:815–820CrossRefGoogle Scholar
  96. Railsback LB, Brook GA, Chen J, Kalin R, Fleisher CJ (1994) Environmental controls on the petrology of a late Holocene speleothem from Botswana with annual layers of aragonite and calcite. J Sediment Res 64(1a):147–155Google Scholar
  97. Repinski P, Holmgren K, Lauritzen SE, Lee-Thorp JA (1999) A late–Holocene climate record from a stalagmite, Cold Air Cave, Northern Province, South Africa. Palaeogeogr Palaeoclim Palaeoecol 150:269–277CrossRefGoogle Scholar
  98. Richards DA, Dorale JA (2003) Uranium-series chronology and environmental applications of speleothems. Rev Mineral Geochem 52:407–460CrossRefGoogle Scholar
  99. Rozanski K, Araguás-Araguás L, Gonfiantini R (1993) Isotopic patterns in modern global precipitation. In: Swart PK et al. (eds) Climate change in continental isotopic record, American Geophysical Union Monograph, vol 78, pp 1–36Google Scholar
  100. Sanwal J, Kotlia BS, Rajendran C, Ahmad SM, Rajendran K, Sandiford M (2013) Climatic variability in central Indian Himalaya during the last 1800 years: evidence from a high resolution speleothem record. Quat Int 304:183–192CrossRefGoogle Scholar
  101. Schwarcz HP (1986) Geochronology and isotopic geochemistry of speleothems. In: Fritz P, Fontes JC (eds) Handbook of environmental isotope geochemistry. Elsevier, Amsterdam, pp 271–303Google Scholar
  102. Self CA, Hill CA (2003) How speleothems grow: an introduction to the ontogeny of cave minerals. J Cave and Karst Stud 65(2):130–151Google Scholar
  103. Shakun JD, Burns SJ, Fleitmann D, Kramers J, Matter A (2007) A high resolution, absolute-dated deglacial speleothem record of Indian Ocean climate from Socotra Island. Earth Planet Sci Lett 259:442–456CrossRefGoogle Scholar
  104. Shen C-C, Edwards RL, Cheng H, Dorale JA, Thomas RB, Moran SB, Weinstein SE, Hirschmann M (2002) Uranium and thorium isotopic and concentration measurements by magnetic sector inductively coupled plasma mass spectrometry. Chem Geol 185:165–178CrossRefGoogle Scholar
  105. Shindell DT, Schmidt GA, Mann ME, Rind D, Waple A (2001) Solar forcing of regional climate change during the Maunder Minimum. Science 294:2149–2152CrossRefGoogle Scholar
  106. Sinha A, Cannariato KG, Stott LD, Li HC, You CF, Cheng H, Edwards RL, Singh IB (2005) Variability of Southwest Indian summer monsoon precipitation during the Bølling–Ållerød. Geology 33:813–816CrossRefGoogle Scholar
  107. Sinha A, Cannariato KG, Stott LD, Cheng H, Edwards RL, Yadava MG, Singh IB (2007) A 900-year (600–1500 A.D.) record of the Indian summer monsoon precipitation from the core monsoon zone of India. Geophys Res Lett 34(16):L16707CrossRefGoogle Scholar
  108. Sinha A, Berkelhammer M, Stott L, Mudelsee M, Cheng H, Biswas J (2011) The leading mode of Indian Summer Monsoon precipitation variability during the last millennium. Geophys Res Lett 38:L15703CrossRefGoogle Scholar
  109. Sinha A, Kathayat G, Cheng H, Breitenbach SFM, Berkelhammer M, Mudelsee M, Biswas J, Edwards RL (2015) Trends, oscillations and anomalies in the Indian Summer Monsoon rainfall over the last two millennia. Nature Communications 6(6309):1–8Google Scholar
  110. Spötl C, Mangini A (2002) Stalagmite from the Austrian Alps reveals Dansgaard-Oeschger events during isotope stage 3: implications for the absolute chronologyof Greenland ice cores. Earth and Planet Sci Lett 203:507–518CrossRefGoogle Scholar
  111. Spötl C, Mangini A, Richards DA (2006) Chronology and paleoenvironment of Marine Isotope Stage 3 from two high-elevation speleothems, Austrian Alps. Quat Sci Rev 25(9–10):1127–1136CrossRefGoogle Scholar
  112. Sweeting MM (1972) Karst landforms. Macmillan, London, p 362Google Scholar
  113. Talma AS, Vogel JC (1992) Late Quaternary paleotemperatures derived from a speleothem from Cango Caves, Cape Province, South Africa. Quat Res 37:203–213CrossRefGoogle Scholar
  114. Thompson P, Schwarcz H, Ford D (1974) Continental Pleistocene climatic variations from speleothem age and isotopic data. Science 184(4139):893–895CrossRefGoogle Scholar
  115. Vacco DA, Clark PU, Mix AC, Cheng H, Edwards RL (2005) A speleothem record of Younger Dryas cooling, Klamath Mountains, Oregon, USA. Quat Res 64:249–256CrossRefGoogle Scholar
  116. Vaupotič J, Kobal I (2004) Radon doses based on Alpha spectrometry. Acta Chim Slov 51:159–168Google Scholar
  117. Vollweiler N, Scholz D, Mühlinghaus C, Mangini A, Spötl C (2006) A precisely dated climate record for the last 9 kyr from three high alpine stalagmites, Spannagel Cave Austria. Geophys Res Lett 33(L20703):1–5Google Scholar
  118. Wang YJ, Cheng H, Edwards RL, An ZS, Wu JY, Shen C-C, Dorale JA (2001) A high-resolution absolute-dated late Pleistocene monsoon record from Hulu Cave. Science 294:2345–2348CrossRefGoogle Scholar
  119. Wang YJ, Cheng H, Edwards RL, He Y, Kong XG, An ZS, Wu JY, Kelly MJ, Dykoski CA, Li XD (2005) The Holocene Asian monsoon: links to solar changes and North Atlantic climate. Science 308:854–857CrossRefGoogle Scholar
  120. Wang Y, Cheng H, Edwards RL, Kong X, Shao X, Chen S, Wu J, Jiang X, Wang X, Zhisheng A (2008) Millenial and orbital scale changes in the East Asian monsoon over the past 224,000 years. Nature 451:1090–1093CrossRefGoogle Scholar
  121. White WB (1988) Geomorphology and Hydrology of Karst Terrains. Oxford University press, p 464Google Scholar
  122. White WB (1997) Thermodynamic equilibrium, kinetics, activation barriers, and reaction mechanisms for chemical reactions in karst terrains. Environ Geol 30(1/2):46–58CrossRefGoogle Scholar
  123. Yadava MG (2002) Stable isotope systematics in cave calcites: Implications to past climatic changes in tropical India, Ph.D. thesis. Physical Research Laboratory, Navrangpura, India, pp 1–197Google Scholar
  124. Yadava MG, Ramesh R (2005) Monsoon reconstruction from radiocarbon dated tropical Indian speleothems. The Holocene 15:48–59CrossRefGoogle Scholar
  125. Yadava MG, Ramesh R (2006) Stable oxygen and carbon isotope variations as monsoon proxies: a comparative study of speleothems from four different locations in India. J Geol Soc India 68:461–475Google Scholar
  126. Yadava MG, Ramesh R, Pant GB (2004) Past monsoon rainfall variations in peninsular India recorded in a 331-year-old speleothem. Holocene 14:517–524CrossRefGoogle Scholar
  127. Yang Y, Yuan DX, Cheng H, Zhang ML, Qin JM, Lin YS, Zhu XY, Edwards RL (2010) Precise dating of abrupt shifts in the Asian Monsoon during the last deglaciation based on stalagmite data from Yamen Cave, Guizhou Province, Science China. Earth Sci 53:633–641Google Scholar
  128. Zhang P, Cheng H, Edwards RL, Chen F, Wang Y, Yang X, Liu J, Tan M, Wang X, Ji Liu, An C, Dai Z, Zhou J, Zhang D, Jia J, Jin L, Johnson KR (2008) A test of climate, sun and culture relationships from an 1810-Year Chinese cave record. Science 322(5903):940–942CrossRefGoogle Scholar
  129. Zhou H, Zhao J, Feng Y, Gagan MK, Zhou G, Yan J (2008) Distinct climate change synchronous with Heinrich event one, recorded by stable oxygen and carbon isotopic compositions in stalagmites from China. Quat Res 69:306–315CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Centre of Advanced Study (CAS) in GeologyKumaun UniversityNainitalIndia

Personalised recommendations