Animal Models of Myasthenia Gravis for Preclinical Evaluation

  • Linda L. KusnerEmail author
  • Rozen Le Panse
  • Mario Losen
  • William D. Phillips
Part of the Current Clinical Neurology book series (CCNEU)


Myasthenia gravis (MG) is an autoimmune disorder characterized by generalized muscle weakness due to autoantibodies causing dysfunction of the neuromuscular junction (NMJ). Steroids and other immunosuppressant’s provide effective treatment for MG. However, these treatments often cause severe side effects, and some patients are treatment resistant. Therefore, the development of new therapeutics that are specific, potent, and safe is necessary to improve quality of life in MG patients. Use of animal models can accelerate the preclinical evaluation of new or repurposed therapeutics for MG. The experimental animal models are the experimental autoimmune MG (EAMG), induced by antigen immunization, and the passive transfer MG (PTMG), induced by antibodies. The variability, between laboratories, in experimental design, methods of induction, and outcome measurements for preclinical studies make it difficult to interpret and compare the published reports and assess the potential for application to MG patients. Standard procedures for animal care, sampling and randomization of animals, experimental design, and outcome measures will clarify the interpretation of preclinical testing and improve our ability to navigate potential new therapeutics toward clinical trials.


Experimental autoimmune myasthenia gravis Passive transfer myasthenia gravis Experimental humanized mouse model Acetylcholine receptor myasthenia gravis models Muscle-specific kinase myasthenia gravis models Outcome measurements Electromyography Animal care Rigor 


  1. 1.
    Wu B, Goluszko E, Huda R, Tuzun E, Christadoss P. Experimental autoimmune myasthenia gravis in the mouse. Curr Protoc Immunol. 2013;Chapter 15:Unit 15.8.Google Scholar
  2. 2.
    Tuzun E, Berrih-Aknin S, Brenner T, Kusner LL, Le Panse R, Yang H, et al. Guidelines for standard preclinical experiments in the mouse model of myasthenia gravis induced by acetylcholine receptor immunization. Exp Neurol. 2015;270:11–7.CrossRefPubMedGoogle Scholar
  3. 3.
    Fuchs S, Nevo D, Tarrab-Hazdai R, Yaar I. Strain differences in the autoimmune response of mice to acetylcholine receptors. Nature. 1976;263(5575):329–30.CrossRefPubMedGoogle Scholar
  4. 4.
    Berman PW, Patrick J. Experimental myasthenia gravis. A murine system. J Exp Med. 1980;151(1):204–23.CrossRefPubMedGoogle Scholar
  5. 5.
    Hoedemaekers A, Graus Y, van Breda Vriesman P, de Baets M. Age- and sex-related resistance to chronic experimental autoimmune myasthenia gravis (EAMG) in Brown Norway rats. Clin Exp Immunol. 1997;107(1):189–97.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Losen M, Stassen MH, Martinez-Martinez P, Machiels BM, Duimel H, Frederik P, et al. Increased expression of rapsyn in muscles prevents acetylcholine receptor loss in experimental autoimmune myasthenia gravis. Brain. 2005;128(Pt 10):2327–37.CrossRefPubMedGoogle Scholar
  7. 7.
    Gomez AM, Vrolix K, Martinez-Martinez P, Molenaar PC, Phernambucq M, van der Esch E, et al. Proteasome inhibition with bortezomib depletes plasma cells and autoantibodies in experimental autoimmune myasthenia gravis. J Immunol. 2011;186(4):2503–13.CrossRefPubMedGoogle Scholar
  8. 8.
    Lennon VA, Seybold ME, Lindstrom JM, Cochrane C, Ulevitch R. Role of complement in the pathogenesis of experimental autoimmune myasthenia gravis. J Exp Med. 1978;147(4):973–83.CrossRefPubMedGoogle Scholar
  9. 9.
    Lindstrom JM, Engel AG, Seybold ME, Lennon VA, Lambert EH. Pathological mechanisms in experimental autoimmune myasthenia gravis. II. Passive transfer of experimental autoimmune myasthenia gravis in rats with anti-acetylcholine recepotr antibodies. J Exp Med. 1976;144(3):739–53.CrossRefPubMedGoogle Scholar
  10. 10.
    van der Neut Kolfschoten M, Schuurman J, Losen M, Bleeker WK, Martinez-Martinez P, Vermeulen E, et al. Anti-inflammatory activity of human IgG4 antibodies by dynamic fab arm exchange. Science. 2007;317(5844):1554–7.CrossRefPubMedGoogle Scholar
  11. 11.
    Okumura S, McIntosh K, Drachman DB. Oral administration of acetylcholine receptor: effects on experimental myasthenia gravis. Ann Neurol. 1994;36(5):704–13.CrossRefPubMedGoogle Scholar
  12. 12.
    Soltys J, Kusner LL, Young A, Richmonds C, Hatala D, Gong B, et al. Novel complement inhibitor limits severity of experimentally myasthenia gravis. Ann Neurol. 2009;65(1):67–75.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    de Silva S, Blum JE, McIntosh KR, Order S, Drachman DB. Treatment of experimental myasthenia gravis with total lymphoid irradiation. Clin Immunol Immunopathol. 1988;48(1):31–41.CrossRefPubMedGoogle Scholar
  14. 14.
    Fujii Y, Lindstrom J. Specificity of the T cell immune response to acetylcholine receptor in experimental autoimmune myasthenia gravis. Response to subunits and synthetic peptides. J Immunol. 1988;140(6):1830–7.PubMedGoogle Scholar
  15. 15.
    Losen M, Martinez-Martinez P, Molenaar PC, Lazaridis K, Tzartos S, Brenner T, et al. Standardization of the experimental autoimmune myasthenia gravis (EAMG) model by immunization of rats with Torpedo Californica acetylcholine receptors—recommendations for methods and experimental designs. Exp Neurol. 2015;270:18–28.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Weiss JM, Robinet M, Aricha R, Cufi P, Villeret B, Lantner F, et al. Novel CXCL13 transgenic mouse: inflammation drives pathogenic effect of CXCL13 in experimental myasthenia gravis. Oncotarget. 2016;7(7):7550–62.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Lennon VA, Lindstrom JM, Seybold ME. Experimental autoimmune myasthenia: a model of myasthenia gravis in rats and guinea pigs. J Exp Med. 1975;141(6):1365–75.CrossRefPubMedGoogle Scholar
  18. 18.
    Aissaoui A, Klingel-Schmitt I, Couderc J, Chateau D, Romagne F, Jambou F, et al. Prevention of autoimmune attack by targeting specific T-cell receptors in a severe combined immunodeficiency mouse model of myasthenia gravis. Ann Neurol. 1999;46(4):559–67.CrossRefPubMedGoogle Scholar
  19. 19.
    Martinez-Martinez P, Losen M, Duimel H, Frederik P, Spaans F, Molenaar P, et al. Overexpression of rapsyn in rat muscle increases acetylcholine receptor levels in chronic experimental autoimmune myasthenia gravis. Am J Pathol. 2007;170(2):644–57.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Kimura J. Electrodiagnosis in disease of nerve and muscle: principles and practice. Oxford: Oxford University Press; 2001.Google Scholar
  21. 21.
    Engel AG, Sakakibara H, Sahashi K, Lindstrom JM, Lambert EH, Lennon VA. Passively transferred experimental autoimmune myasthenia gravis. Sequential and quantitative study of the motor end-plate fine structure and ultrastructural localization of immune complexes (IgG and C3), and of the acetylcholine receptor. Neurology. 1979;29(2):179–88.CrossRefPubMedGoogle Scholar
  22. 22.
    Morgan BP, Chamberlain-Banoub J, Neal JW, Song W, Mizuno M, Harris CL. The membrane attack pathway of complement drives pathology in passively induced experimental autoimmune myasthenia gravis in mice. Clin Exp Immunol. 2006;146(2):294–302.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Kusner LL, Halperin JA, Kaminski HJ. Cell surface complement regulators moderate experimental myasthenia gravis pathology. Muscle Nerve. 2013;47(1):33–40.CrossRefPubMedGoogle Scholar
  24. 24.
    Hoedemaekers A, Bessereau JL, Graus Y, Guyon T, Changeux JP, Berrih-Aknin S, et al. Differential susceptibility of young and old rat neuromuscular junctions to antibody-mediated AChR degradation in experimental autoimmune myasthenia gravis. Ann N Y Acad Sci. 1998;841:550–4.CrossRefPubMedGoogle Scholar
  25. 25.
    Gomez AM, Stevens JA, Mane-Damas M, Molenaar P, Duimel H, Verheyen F, et al. Silencing of Dok-7 in adult rat muscle increases susceptibility to passive transfer myasthenia gravis. Am J Pathol. 2016;186(10):2559–68.CrossRefPubMedGoogle Scholar
  26. 26.
    Schonbeck S, Padberg F, Hohlfeld R, Wekerle H. Transplantation of thymic autoimmune microenvironment to severe combined immunodeficiency mice. A new model of myasthenia gravis. J Clin Invest. 1992;90(1):245–50.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Sudres M, Maurer M, Robinet M, Bismuth J, Truffault F, Girard D, et al. Preconditioned mesenchymal stem cells treat myasthenia gravis in a humanized preclinical model. JCI Insight. 2017;2(7):e89665.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Koneczny I, Cossins J, Waters P, Beeson D, Vincent A. MuSK myasthenia gravis IgG4 disrupts the interaction of LRP4 with MuSK but both IgG4 and IgG1-3 can disperse preformed agrin-independent AChR clusters. PLoS One. 2013;11:e80695.CrossRefGoogle Scholar
  29. 29.
    Huijbers MG, Zhang W, Klooster R, Niks EH, Friese MB, Straasheijm IR, et al. MuSK IgG4 auto-antibodies cause myasthenia gravis by inhibiting binding between MuSK and Lrp4. PNAS. 2013;110:20783–8.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Ghazanfari N, Morsch M, Reddel SW, Liang SX, Phillips WD. Muscle specific kinase autoantibodies suppress the MuSK pathway and ACh receptor retention at the mouse neuromuscular junction. J Physiol. 2014;592(13):2881–97.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Ghazanfari N, Linsao ELTB, Trajanovska S, Morsch M, Gregorevic P, Liang SX, et al. Forced expression of muscle specific kinase slows postsynaptic acetylcholine receptor loss in a mouse model of MuSK myasthenia gravis. Physiol Rep. 2015;3(12):12658.CrossRefGoogle Scholar
  32. 32.
    Otsuka K, Ito M, Ohkawara B, Masuda A, Kawakami Y, Sahashi K, et al. Collagen Q and anti-MuSK autoantibody competitively suppress agrin/LRP4/MuSK signaling. Sci Rep. 2015;5:13928.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Phillips WD, Christadoss P, Losen M, Punga A, Shigemoto K, Verschuuren J, et al. Guidelines for pre-clinical animal and cellular models of MuSK-myasthenia gravis. Exp Neurol. 2015;270:29–40.CrossRefPubMedGoogle Scholar
  34. 34.
    Shigemoto K, Kubo S, Maruyama N, Hato N, Yamada H, Jie C, et al. Induction of myasthenia by immunization against muscle-specific kinase. J Clin Invest. 2006;116:1016–24.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Jha S, Xu K, Maruta T, Oshima M, Mosier DR, Atassi MZ, et al. Myasthenia gravis induced in mice by immunization with the recombinant extracellular domain of rat muscle-specific kinase (MuSK). J Neuroimmunol. 2006;175:107–17.CrossRefPubMedGoogle Scholar
  36. 36.
    Richman DP, Nishi K, Morell SW, Chang JM, Ferns MJ, Wollmann RL, et al. Acute severe animal model of anti-muscle-specific kinase myasthenia. Arch Neurol. 2012;69(4):453–60.CrossRefPubMedGoogle Scholar
  37. 37.
    Punga AR, Lin S, Oliveri F, Meinen S, Ruegg MA. Muscle-selective synaptic disassembly and reorganization in MuSK antibody-positive MG mice. Exp Neurol. 2011;230:207–17.CrossRefPubMedGoogle Scholar
  38. 38.
    Viegas S, Jacobson L, Waters P, Cossins J, Jacob S, Leite MI, et al. Passive and active immunization models of MuSK-Ab positive myasthenia: electrophysiological evidence for pre and postsynaptic defects. Exp Neurol. 2012;234:506–12.CrossRefPubMedGoogle Scholar
  39. 39.
    Ulusoy C, Kim E, Tuzun E, Huda R, Yilmaz V, Poulas K, et al. Preferential production of IgG1, IL-4 and IL-10 in MuSK-immunized mice. Clin Immunol. 2014;151(2):155–63.CrossRefPubMedGoogle Scholar
  40. 40.
    Patel V, Oh A, Voit A, Sultatos LG, Babu GJ, Wilson BA, et al. Altered active zones, vesicle pools, nerve terminal conductivity, and morphology during experimental MuSK myasthenia gravis. PLoS One. 2014;9(12):e110571.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Cole RN, Reddel SW, Gervasio OL, Phillips WD. Anti-MuSK patient antibodies disrupt the mouse neuromuscular junction. Ann Neurol. 2008;63(6):782–9.CrossRefPubMedGoogle Scholar
  42. 42.
    Kawakami Y, Ito M, Hirayama M, Sahashi K, Ohkawara B, Masuda A, et al. Anti-MuSK autoantibodies block binding of collagen Q to MuSK. Neurology. 2011;77(20):1819–26.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Klooster R, Plomp JJ, Huijbers MG, Niks EH, Straasheijm KR, Detmers FJ, et al. Muscle-specific kinase myasthenia gravis IgG4 autoantibodies cause severe neuromuscular junction dysfunction in mice. Brain. 2012;135(Pt 4):1081–101.CrossRefPubMedGoogle Scholar
  44. 44.
    Morsch M, Reddel SW, Ghazanfari N, Toyka KV, Phillips WD. Muscle specific kinase autoantibodies cause synaptic failure through progressive wastage of postsynaptic acetylcholine receptors. Exp Neurol. 2012;237(2):286–95.CrossRefPubMedGoogle Scholar
  45. 45.
    Ghazanfari N, Linsao EL, Trajanovska S, Morsch M, Gregorevic P, Liang SX, et al. Forced expression of muscle specific kinase slows postsynaptic acetylcholine receptor loss in a mouse model of MuSK myasthenia gravis. Physiol Rep. 2015;3(12):e12658.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Plomp JJ, Morsch M, Phillips WD, Verschuuren JJ. Electrophysiological analysis of neuromuscular synaptic function in myasthenia gravis patients and animal models. Exp Neurol. 2015;270:41–54.CrossRefPubMedGoogle Scholar
  47. 47.
    Tse N, Morsch M, Ghazanfari N, Cole L, Visvanathan A, Leamey C, et al. The neuromuscular junction: measuring synapse size, fragmentation and changes in synaptic protein density using confocal fluorescence microscopy. J Vis Exp. 2014;94:e52220.Google Scholar
  48. 48.
    Toth LA. The influence of the cage environment on rodent physiology and behavior: implications for reproducibility of pre-clinical rodent research. Exp Neurol. 2015;270:72–7.CrossRefPubMedGoogle Scholar
  49. 49.
    Cheng A, Morsch M, Murata Y, Ghazanfari N, Reddel SW, Phillips WD. Sequence of age-associated changes to the mouse neuromuscular junction and the protective effects of voluntary exercise. PLoS One. 2013;8(7):e67970.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Tournier JN, Mathieu J, Mailfert Y, Multon E, Drouet C, Jouan A, et al. Chronic restraint stress induces severe disruption of the T-cell specific response to tetanus toxin vaccine. Immunology. 2001;102(1):87–93.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Moncek F, Duncko R, Johansson BB, Jezova D. Effect of environmental enrichment on stress related systems in rats. J Neuroendocrinol. 2004;16(5):423–31.CrossRefPubMedGoogle Scholar
  52. 52.
    Landis SC, Amara SG, Asadullah K, Austin CP, Blumenstein R, Bradley EW, et al. A call for transparent reporting to optimize the predictive value of preclinical research. Nature. 2012;490(7419):187–91.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Linda L. Kusner
    • 1
    Email author
  • Rozen Le Panse
    • 2
  • Mario Losen
    • 3
  • William D. Phillips
    • 4
  1. 1.Department of Pharmacology and PhysiologyGeorge Washington UniversityWashington, DCUSA
  2. 2.UMRS 974 – UPMC Sorbonne Universités – INSERM – AIMParisFrance
  3. 3.Department of NeuroscienceSchool of Mental Health and Neuroscience, Maastricht UniversityMaastrichtThe Netherlands
  4. 4.School of Medical Sciences (Physiology) and Bosch Institute, Anderson Stuart Bldg (F13)University of SydneySydneyAustralia

Personalised recommendations