Immunopathogenesis of Myasthenia Gravis

  • Rozen Le Panse
  • Sonia Berrih-Aknin
Part of the Current Clinical Neurology book series (CCNEU)


The development of myasthenia gravis (MG), similar to the other autoimmune diseases, combines a predisposing genetic background, immune imbalance, and triggering factors. The etiological hypotheses are discussed, and the role of the thymus is detailed in the context of the recent results of the thymectomy trial. The main defects of immune regulation, including the role of B cells, the immune imbalance between Treg and Th17 cells, and the role of follicular helper cells, are reviewed. Together, this book chapter summarizes the heterogeneity of MG patients and the genetic, immunological, and environmental mechanisms that play a potential role in this disease.


Myasthenia Autoantibodies Thymus Inflammation Germinal centers Th17 cells Treg cells Tfh cells Viral hypothesis Genetics Environmental factors miRNA 


  1. 1.
    Patrick J, Lindstrom J. Autoimmune response to acetylcholine receptor. Science. 1973;180:871–2.PubMedCrossRefGoogle Scholar
  2. 2.
    Fambrough DM, Drachman DB, Satyamurti S. Neuromuscular junction in myasthenia gravis: decreased acetylcholine receptors. Science. 1973;182:293–5.PubMedCrossRefGoogle Scholar
  3. 3.
    Appel SH, Almon RR, Levy N. Acetylcholine receptor antibodies in myasthenia gravis. N Engl J Med. 1975;293:760–1.PubMedCrossRefGoogle Scholar
  4. 4.
    Aharonov A, Abramsky O, Tarrab-Hazdai R, Fuchs S. Humoral antibodies to acetylcholine receptor in patients with myasthenia gravis. Lancet. 1975;2:340–2.PubMedCrossRefGoogle Scholar
  5. 5.
    Hoch W, McConville J, Helms S, Newsom-Davis J, Melms A, Vincent A. Auto-antibodies to the receptor tyrosine kinase MuSK in patients with myasthenia gravis without acetylcholine receptor antibodies. Nat Med. 2001;7:365–8.PubMedCrossRefGoogle Scholar
  6. 6.
    Higuchi O, Hamuro J, Motomura M, Yamanashi Y. Autoantibodies to low-density lipoprotein receptor-related protein 4 in myasthenia gravis. Ann Neurol. 2011;69:418–22.PubMedCrossRefGoogle Scholar
  7. 7.
    Zhang B, Tzartos JS, Belimezi M, Ragheb S, Bealmear B, Lewis RA, et al. Autoantibodies to lipoprotein-related protein 4 in patients with double-seronegative myasthenia gravis. Arch Neurol. 2012;69:445–51.PubMedCrossRefGoogle Scholar
  8. 8.
    Berrih-Aknin S. Myasthenia Gravis: paradox versus paradigm in autoimmunity. J Autoimmun. 2014;52:1–28.PubMedCrossRefGoogle Scholar
  9. 9.
    Berrih-Aknin S, Le Panse R. Myasthenia gravis: a comprehensive review of immune dysregulation and etiological mechanisms. J Autoimmun. 2014;52:90–100.PubMedCrossRefGoogle Scholar
  10. 10.
    Zisimopoulou P, Evangelakou P, Tzartos J, Lazaridis K, Zouvelou V, Mantegazza R, et al. A comprehensive analysis of the epidemiology and clinical characteristics of anti-LRP4 in myasthenia gravis. J Autoimmun. 2014;52:139–45.PubMedCrossRefGoogle Scholar
  11. 11.
    Unwin N. Nicotinic acetylcholine receptor and the structural basis of neuromuscular transmission: insights from Torpedo postsynaptic membranes. Q Rev Biophys. 2013;46:283–322.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Martyn JA, Fagerlund MJ, Eriksson LI. Basic principles of neuromuscular transmission. Anaesthesia. 2009;64(Suppl 1):1–9.PubMedCrossRefGoogle Scholar
  13. 13.
    DeChiara TM, Bowen DC, Valenzuela DM, Simmons MV, Poueymirou WT, Thomas S, et al. The receptor tyrosine kinase MuSK is required for neuromuscular junction formation in vivo. Cell. 1996;85:501–12.PubMedCrossRefGoogle Scholar
  14. 14.
    Hesser BA, Henschel O, Witzemann V. Synapse disassembly and formation of new synapses in postnatal muscle upon conditional inactivation of MuSK. Mol Cell Neurosci. 2006;31:470–80.PubMedCrossRefGoogle Scholar
  15. 15.
    Kim N, Stiegler AL, Cameron TO, Hallock PT, Gomez AM, Huang JH, et al. Lrp4 is a receptor for Agrin and forms a complex with MuSK. Cell. 2008;135:334–42.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Beeson D. Congenital myasthenic syndromes: recent advances. Curr Opin Neurol. 2016;29:565–71.PubMedCrossRefGoogle Scholar
  17. 17.
    Kucukerden M, Huda R, Tuzun E, Yilmaz A, Skriapa L, Trakas N, et al. MuSK induced experimental autoimmune myasthenia gravis does not require IgG1 antibody to MuSK. J Neuroimmunol. 2016;295–s296:84–92.CrossRefGoogle Scholar
  18. 18.
    Leite MI, Jacob S, Viegas S, Cossins J, Clover L, Morgan BP, et al. IgG1 antibodies to acetylcholine receptors in ‘seronegative’ myasthenia gravis. Brain. 2008;131:1940–52.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Binks S, Vincent A, Palace J. Myasthenia gravis: a clinical-immunological update. J Neurol. 2016;263:826–34.PubMedCrossRefGoogle Scholar
  20. 20.
    Hong Y, Zisimopoulou P, Trakas N, Karagiorgou K, Stergiou C, Skeie GO, et al. Multiple antibody detection in ‘seronegative’ myasthenia gravis patients. Eur J Neurol. 2017;24:844–50.PubMedCrossRefGoogle Scholar
  21. 21.
    Berrih-Aknin S. Role of the thymus in autoimmune myasthenia gravis. Clin Exp Neuroimmunol. 2016;7:226–37.CrossRefGoogle Scholar
  22. 22.
    Truffault F, de Montpreville V, Eymard B, Sharshar T, Le Panse R, Berrih-Aknin S. Thymic Germinal Centers and Corticosteroids In Myasthenia Gravis: An Immunopathological Study in 1035 cases and a critical review. Clin Rev Allergy Immunol. 2017;52:108–24.PubMedCrossRefGoogle Scholar
  23. 23.
    Le Panse R, Berrih-Aknin S. Autoimmune myasthenia gravis: autoantibody mechanisms and new developments on immune regulation. Curr Opin Neurol. 2013;26:569–76.PubMedCrossRefGoogle Scholar
  24. 24.
    Tuzun E, Christadoss P. Complement associated pathogenic mechanisms in myasthenia gravis. Autoimmun Rev. 2013 Jul;12(9):904–11.PubMedCrossRefGoogle Scholar
  25. 25.
    Pestronk A, Drachman DB, Self SG. Measurement of junctional acetylcholine receptors in myasthenia gravis: clinical correlates. Muscle Nerve. 1985;8:245–51.PubMedCrossRefGoogle Scholar
  26. 26.
    Nakano S, Engel AG. Myasthenia gravis: quantitative immunocytochemical analysis of inflammatory cells and detection of complement membrane attack complex at the end-plate in 30 patients. Neurology. 1993;43:1167–72.PubMedCrossRefGoogle Scholar
  27. 27.
    Guyon T, Levasseur P, Truffault F, Cottin C, Gaud C, Berrih-Aknin S. Regulation of acetylcholine receptor alpha subunit variants in human myasthenia gravis. Quantification of steady-state levels of messenger RNA in muscle biopsy using the polymerase chain reaction. J Clin Invest. 1994;94:16–24.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Guyon T, Wakkach A, Poea S, Mouly V, Klingel-Schmitt I, Levasseur P, et al. Regulation of acetylcholine receptor gene expression in human myasthenia gravis muscles. Evidences for a compensatory mechanism triggered by receptor loss. J Clin Invest. 1998;102:249–63.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Evoli A, Tonali PA, Padua L, Monaco ML, Scuderi F, Batocchi AP, et al. Clinical correlates with anti-MuSK antibodies in generalized seronegative myasthenia gravis. Brain. 2003;126:2304–11.PubMedCrossRefGoogle Scholar
  30. 30.
    Guptill JT, Sanders DB, Evoli A. Anti-MuSK antibody myasthenia gravis: clinical findings and response to treatment in two large cohorts. Muscle Nerve. 2011;44:36–40.PubMedCrossRefGoogle Scholar
  31. 31.
    Lavrnic D, Losen M, Vujic A, De Baets M, Hajdukovic LJ, Stojanovic V, et al. The features of myasthenia gravis with autoantibodies to MuSK. J Neurol Neurosurg Psychiatry. 2005;76:1099–102.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Leite MI, Strobel P, Jones M, Micklem K, Moritz R, Gold R, et al. Fewer thymic changes in MuSK antibody-positive than in MuSK antibody-negative MG. Ann Neurol. 2005;57:444–8.PubMedCrossRefGoogle Scholar
  33. 33.
    Huijbers MG, Zhang W, Klooster R, Niks EH, Friese MB, Straasheijm KR, et al. MuSK IgG4 autoantibodies cause myasthenia gravis by inhibiting binding between MuSK and Lrp4. Proc Natl Acad Sci U S A. 2013;110:20783–8.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Boneva N, Frenkian-Cuvelier M, Bidault J, Brenner T, Berrih-Aknin S. Major pathogenic effects of anti-MuSK antibodies in myasthenia gravis. J Neuroimmunol. 2006;177:119–31.PubMedCrossRefGoogle Scholar
  35. 35.
    Morsch M, Reddel SW, Ghazanfari N, Toyka KV, Phillips WD. Muscle specific kinase autoantibodies cause synaptic failure through progressive wastage of postsynaptic acetylcholine receptors. Exp Neurol. 2012;237:286–95.PubMedCrossRefGoogle Scholar
  36. 36.
    Pevzner A, Schoser B, Peters K, Cosma NC, Karakatsani A, Schalke B, et al. Anti-LRP4 autoantibodies in AChR- and MuSK-antibody-negative myasthenia gravis. J Neurol. 2012;259:427–35.PubMedCrossRefGoogle Scholar
  37. 37.
    Shen C, Lu Y, Zhang B, Figueiredo D, Bean J, Jung J, et al. Antibodies against low-density lipoprotein receptor-related protein 4 induce myasthenia gravis. J Clin Invest. 2013;123:5190–202.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Cossins J, Belaya K, Zoltowska K, Koneczny I, Maxwell S, Jacobson L, et al. The search for new antigenic targets in myasthenia gravis. Ann N Y Acad Sci. 2012;1275:123–8.PubMedCrossRefGoogle Scholar
  39. 39.
    Gasperi C, Melms A, Schoser B, Zhang Y, Meltoranta J, Risson V, et al. Anti-agrin autoantibodies in myasthenia gravis. Neurology. 2014;82:1976–83.PubMedCrossRefGoogle Scholar
  40. 40.
    Cortes-Vicente E, Gallardo E, Martinez MA, Diaz-Manera J, Querol L, Rojas-Garcia R, et al. Clinical characteristics of patients with double-seronegative myasthenia gravis and antibodies to cortactin. JAMA Neurol. 2016;73:1099–104.PubMedCrossRefGoogle Scholar
  41. 41.
    Jacob S, Viegas S, Leite MI, Webster R, Cossins J, Kennett R, et al. Presence and pathogenic relevance of antibodies to clustered acetylcholine receptor in ocular and generalized myasthenia gravis. Arch Neurol. 2012;69:994–1001.PubMedCrossRefGoogle Scholar
  42. 42.
    Marx A, Pfister F, Schalke B, Saruhan-Direskeneli G, Melms A, Strobel P. The different roles of the thymus in the pathogenesis of the various myasthenia gravis subtypes. Autoimmun Rev. 2013 Jul;12(9):875–84.PubMedCrossRefGoogle Scholar
  43. 43.
    Berrih-Aknin S, Morel E, Raimond F, Safar D, Gaud C, Binet JP, et al. The role of the thymus in myasthenia gravis: immunohistological and immunological studies in 115 cases. Ann N Y Acad Sci. 1987;505:50–70.PubMedCrossRefGoogle Scholar
  44. 44.
    Filosso PL, Galassi C, Ruffini E, Margaritora S, Bertolaccini L, Casadio C, et al. Thymoma and the increased risk of developing extrathymic malignancies: a multicentre study. Eur J Cardiothorac Surg. 2013;44:219–24; discussion 224.PubMedCrossRefGoogle Scholar
  45. 45.
    Bertho JM, Demarquay C, Moulian N, Van Der Meeren A, Berrih-Aknin S, Gourmelon P. Phenotypic and immunohistological analyses of the human adult thymus: evidence for an active thymus during adult life. Cell Immunol. 1997;179:30–40.PubMedCrossRefGoogle Scholar
  46. 46.
    Berrih-Aknin S, Ruhlmann N, Bismuth J, Cizeron-Clairac G, Zelman E, Shachar I, et al. CCL21 overexpressed on lymphatic vessels drives thymic hyperplasia in myasthenia. Ann Neurol. 2009;66:521–31.PubMedCrossRefGoogle Scholar
  47. 47.
    Weiss JM, Cufi P, Bismuth J, Eymard B, Fadel E, Berrih-Aknin S, et al. SDF-1/CXCL12 recruits B cells and antigen-presenting cells to the thymus of autoimmune myasthenia gravis patients. Immunobiology. 2013;218:373–81.PubMedCrossRefGoogle Scholar
  48. 48.
    Berrih S, Morel E, Gaud C, Raimond F, Le Brigand H, Bach JF. Anti-AChR antibodies, thymic histology, and T cell subsets in myasthenia gravis. Neurology. 1984;34:66–71.PubMedCrossRefGoogle Scholar
  49. 49.
    Willcox HN, Newsom-Davis J, Calder LR. Greatly increased autoantibody production in myasthenia gravis by thymocyte suspensions prepared with proteolytic enzymes. Clin Exp Immunol. 1983;54:378–86.PubMedPubMedCentralGoogle Scholar
  50. 50.
    Lisak RP, Levinson AI, Zweiman B, Kornstein MJ. Antibodies to acetylcholine receptor and tetanus toxoid: in vitro synthesis by thymic lymphocytes. J Immunol. 1986;137:1221–5.PubMedGoogle Scholar
  51. 51.
    Leprince C, Cohen-Kaminsky S, Berrih-Aknin S, Vernet-Der Garabedian B, Treton D, Galanaud P, et al. Thymic B cells from myasthenia gravis patients are activated B cells. Phenotypic and functional analysis. J Immunol. 1990;145:2115–22.PubMedGoogle Scholar
  52. 52.
    Schonbeck S, Padberg F, Hohlfeld R, Wekerle H. Transplantation of thymic autoimmune microenvironment to severe combined immunodeficiency mice. A new model of myasthenia gravis. J Clin Invest. 1992;90:245–50.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Aissaoui A, Klingel-Schmitt I, Couderc J, Chateau D, Romagne F, Jambou F, et al. Prevention of autoimmune attack by targeting specific T-cell receptors in a severe combined immunodeficiency mouse model of myasthenia gravis. Ann Neurol. 1999;46:559–67.PubMedCrossRefGoogle Scholar
  54. 54.
    Sudres M, Maurer M, Robinet M, Bismuth J, Truffault F, Girard D, et al. Preconditioned mesenchymal stem cells treat myasthenia gravis in a humanized preclinical model. JCI Insight. 2017;2:e89665.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Wolfe GI, Kaminski HJ, Aban IB, Minisman G, Kuo HC, Marx A, et al. Randomized trial of thymectomy in myasthenia gravis. N Engl J Med. 2016;375:511–22.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Yang J, Liu C, Li T, Li C. Prognosis of thymectomy in myasthenia gravis patients with thymus hyperplasia. Int J Neurosci. 2017;127(9):785–9.PubMedCrossRefGoogle Scholar
  57. 57.
    Anaya JM. Common mechanisms of autoimmune diseases (the autoimmune tautology). Autoimmun Rev. 2012;11:781–4.PubMedCrossRefGoogle Scholar
  58. 58.
    Newsom-Davis J, Wilson SG, Vincent A, Ward CD. Long-term effects of repeated plasma exchange in myasthenia gravis. Lancet. 1979;1:464–8.PubMedCrossRefGoogle Scholar
  59. 59.
    Diaz-Manera J, Martinez-Hernandez E, Querol L, Klooster R, Rojas-Garcia R, Suarez-Calvet X, et al. Long-lasting treatment effect of rituximab in MuSK myasthenia. Neurology. 2012;78:189–93.PubMedCrossRefGoogle Scholar
  60. 60.
    Le Panse R, Cizeron-Clairac G, Bismuth J, Berrih-Aknin S. Microarrays reveal distinct gene signatures in the thymus of seropositive and seronegative myasthenia gravis patients and the role of CC chemokine ligand 21 in thymic hyperplasia. J Immunol. 2006;177:7868–79.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Meraouna A, Cizeron-Clairac G, Panse RL, Bismuth J, Truffault F, Tallaksen C, et al. The chemokine CXCL13 is a key molecule in autoimmune myasthenia gravis. Blood. 2006;108:432–40.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Weiss JM, Robinet M, Aricha R, Cufi P, Villeret B, Lantner F, et al. Novel CXCL13 transgenic mouse: inflammation drives pathogenic effect of CXCL13 in experimental myasthenia gravis. Oncotarget. 2016;7:7550–62.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Karim MR, Zhang HY, Yuan J, Sun Q, Wang YF, Regulatory B. Cells in seropositive myasthenia gravis versus healthy controls. Front Neurol. 2017;8:43.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Guptill JT, Yi JS, Sanders DB, Guidon AC, Juel VC, Massey JM, et al. Characterization of B cells in muscle-specific kinase antibody myasthenia gravis. Neurol Neuroimmunol Neuroinflamm. 2015;2:e77.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Yi JS, Russo MA, Massey JM, Juel V, Hobson-Webb LD, Gable K, et al. B10 cell frequencies and suppressive capacity in myasthenia gravis are associated with disease severity. Front Neurol. 2017;8:34.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Vander Heiden JA, Stathopoulos P, Zhou JQ, Chen L, Gilbert TJ, Bolen CR, et al. Dysregulation of B cell repertoire formation in myasthenia gravis patients revealed through deep sequencing. J Immunol. 2017;198:1460–73.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Kang SY, Kang CH, Lee KH. B-cell-activating factor is elevated in serum of patients with myasthenia gravis. Muscle Nerve. 2016;54:1030–3.PubMedCrossRefGoogle Scholar
  68. 68.
    Cufi P, Dragin N, Ruhlmann N, Weiss JM, Fadel E, Serraf A, et al. Central role of interferon-beta in thymic events leading to myasthenia gravis. J Autoimmun. 2014;52:44–52.PubMedCrossRefGoogle Scholar
  69. 69.
    Hori S, Takahashi T, Sakaguchi S. Control of autoimmunity by naturally arising regulatory CD4+ T cells. Adv Immunol. 2003;81:331–71.PubMedCrossRefGoogle Scholar
  70. 70.
    Bedoya SK, Lam B, Lau K, Larkin J III. Th17 cells in immunity and autoimmunity. Clin Dev Immunol. 2013;2013:986789.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Balandina A, Lecart S, Dartevelle P, Saoudi A, Berrih-Aknin S. Functional defect of regulatory CD4(+)CD25+ T cells in the thymus of patients with autoimmune myasthenia gravis. Blood. 2005;105:735–41.PubMedCrossRefGoogle Scholar
  72. 72.
    Matsui N, Nakane S, Saito F, Ohigashi I, Nakagawa Y, Kurobe H, et al. Undiminished regulatory T cells in the thymus of patients with myasthenia gravis. Neurology. 2010;74:816–20.PubMedCrossRefGoogle Scholar
  73. 73.
    Battaglia A, Di Schino C, Fattorossi A, Scambia G, Evoli A. Circulating CD4+CD25+ T regulatory and natural killer T cells in patients with myasthenia gravis: a flow cytometry study. J Biol Regul Homeost Agents. 2005;19:54–62.PubMedGoogle Scholar
  74. 74.
    Thiruppathi M, Rowin J, Li Jiang Q, Sheng JR, Prabhakar BS, Meriggioli MN. Functional defect in regulatory T cells in myasthenia gravis. Ann N Y Acad Sci. 2012;1274:68–76.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Luther C, Adamopoulou E, Stoeckle C, Brucklacher-Waldert V, Rosenkranz D, Stoltze L, et al. Prednisolone treatment induces tolerogenic dendritic cells and a regulatory milieu in myasthenia gravis patients. J Immunol. 2009;183:841–8.PubMedCrossRefGoogle Scholar
  76. 76.
    Zhang Y, Wang HB, Chi LJ, Wang WZ. The role of FoxP3+CD4+CD25hi Tregs in the pathogenesis of myasthenia gravis. Immunol Lett. 2009;122:52–7.PubMedCrossRefGoogle Scholar
  77. 77.
    Gradolatto A, Nazzal D, Truffault F, Bismuth J, Fadel E, Foti M, et al. Both Treg cells and Tconv cells are defective in the Myasthenia gravis thymus: roles of IL-17 and TNF-alpha. J Autoimmun. 2014;52:53–63.PubMedCrossRefGoogle Scholar
  78. 78.
    Mountz JD, Wang JH, Xie S, Hsu HC. Cytokine regulation of B-cell migratory behavior favors formation of germinal centers in autoimmune disease. Discov Med. 2011;11:76–85.PubMedPubMedCentralGoogle Scholar
  79. 79.
    Schaerli P, Willimann K, Lang AB, Lipp M, Loetscher P, Moser B. CXC chemokine receptor 5 expression defines follicular homing T cells with B cell helper function. J Exp Med. 2000;192:1553–62.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Breitfeld D, Ohl L, Kremmer E, Ellwart J, Sallusto F, Lipp M, et al. Follicular B helper T cells express CXC chemokine receptor 5, localize to B cell follicles, and support immunoglobulin production. J Exp Med. 2000;192:1545–52.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Forster R, Emrich T, Kremmer E, Lipp M. Expression of the G-protein--coupled receptor BLR1 defines mature, recirculating B cells and a subset of T-helper memory cells. Blood. 1994;84:830–40.PubMedGoogle Scholar
  82. 82.
    Saito R, Onodera H, Tago H, Suzuki Y, Shimizu M, Matsumura Y, et al. Altered expression of chemokine receptor CXCR5 on T cells of myasthenia gravis patients. J Neuroimmunol. 2005;170:172–8.PubMedCrossRefGoogle Scholar
  83. 83.
    Luo C, Li Y, Liu W, Feng H, Wang H, Huang X, et al. Expansion of circulating counterparts of follicular helper T cells in patients with myasthenia gravis. J Neuroimmunol. 2013;256:55–61.PubMedCrossRefGoogle Scholar
  84. 84.
    Xin N, Fu L, Shao Z, Guo M, Zhang X, Zhang Y, et al. RNA interference targeting Bcl-6 ameliorates experimental autoimmune myasthenia gravis in mice. Mol Cell Neurosci. 2014;58:85–94.PubMedCrossRefGoogle Scholar
  85. 85.
    Wen Y, Yang B, Lu J, Zhang J, Yang H, Li J. Imbalance of circulating CD4(+)CXCR5(+)FOXP3(+) Tfr-like cells and CD4(+)CXCR5(+)FOXP3(-) Tfh-like cells in myasthenia gravis. Neurosci Lett. 2016;630:176–82.PubMedCrossRefGoogle Scholar
  86. 86.
    Zhang CJ, Gong Y, Zhu W, Qi Y, Yang CS, Fu Y, et al. Augmentation of circulating follicular helper T Cells and their impact on autoreactive B cells in myasthenia gravis. J Immunol. 2016;197(7):2610.PubMedCrossRefGoogle Scholar
  87. 87.
    Dragin N, Bismuth J, Cizeron-Clairac G, Biferi MG, Berthault C, Serraf A, et al. Estrogen-mediated downregulation of AIRE influences sexual dimorphism in autoimmune diseases. J Clin Invest. 2016;126:1525–37.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Ramanujam R, Pirskanen R, Ramanujam S, Hammarstrom L. Utilizing twins concordance rates to infer the predisposition to myasthenia gravis. Twin Res Hum Genet. 2011;14:129–36.PubMedCrossRefGoogle Scholar
  89. 89.
    Mamrut S, Avidan N, Truffault F, Staun-Ram E, Sharshar T, Eymard B, et al. Methylome and transcriptome profiling in Myasthenia Gravis monozygotic twins. J Autoimmun. 2017;82:62–73.PubMedCrossRefGoogle Scholar
  90. 90.
    Sumitomo S, Fujio K, Okamura T, Yamamoto K. Egr2 and Egr3 are the unique regulators for systemic autoimmunity. JAKSTAT. 2013;2:e23952.PubMedPubMedCentralGoogle Scholar
  91. 91.
    Li S, Miao T, Sebastian M, Bhullar P, Ghaffari E, Liu M, et al. The transcription factors Egr2 and Egr3 are essential for the control of inflammation and antigen-induced proliferation of B and T cells. Immunity. 2012;37:685–96.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Vandiedonck C, Giraud M, Garchon HJ. Genetics of autoimmune myasthenia gravis: the multifaceted contribution of the HLA complex. J Autoimmun. 2005;25(Suppl):6–11.PubMedCrossRefGoogle Scholar
  93. 93.
    Giraud M, Vandiedonck C, Garchon HJ. Genetic factors in autoimmune myasthenia gravis. Ann N Y Acad Sci. 2008;1132:180–92.PubMedCrossRefGoogle Scholar
  94. 94.
    Gregersen PK, Kosoy R, Lee AT, Lamb J, Sussman J, McKee D, et al. Risk for myasthenia gravis maps to a (151) Pro→Ala change in TNIP1 and to human leukocyte antigen-B*08. Ann Neurol. 2012;72:927–35.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Seldin MF, Alkhairy OK, Lee AT, Lamb JA, Sussman J, Pirskanen-Matell R, et al. Genome-wide Association study of late-onset myasthenia gravis: confirmation of TNFRSF11A, and identification of ZBTB10 and Three Distinct HLA Associations. Mol Med. 2015;21:769–81.Google Scholar
  96. 96.
    Meriggioli MN, Sanders DB. Autoimmune myasthenia gravis: emerging clinical and biological heterogeneity. Lancet Neurol. 2009;8:475–90.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Avidan N, Le Panse R, Berrih-Aknin S, Miller A. Genetic basis of myasthenia gravis – a comprehensive review. J Autoimmun. 2014;52:146–53.PubMedCrossRefGoogle Scholar
  98. 98.
    Giraud M, Beaurain G, Eymard B, Tranchant C, Gajdos P, Garchon HJ. Genetic control of autoantibody expression in autoimmune myasthenia gravis: role of the self-antigen and of HLA-linked loci. Genes Immun. 2004;5:398–404.PubMedCrossRefGoogle Scholar
  99. 99.
    Carthew RW, Sontheimer EJ. Origins and mechanisms of miRNAs and siRNAs. Cell. 2009;136:642–55.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Chen JQ, Papp G, Szodoray P, Zeher M. The role of microRNAs in the pathogenesis of autoimmune diseases. Autoimmun Rev. 2016;15:1171–80.PubMedCrossRefGoogle Scholar
  101. 101.
    Punga T, Le Panse R, Andersson M, Truffault F, Berrih-Aknin S, Punga AR. Circulating miRNAs in myasthenia gravis: miR-150-5p as a new potential biomarker. Ann Clin Transl Neurol. 2014;1:49–58.PubMedCrossRefGoogle Scholar
  102. 102.
    Punga T, Bartoccioni E, Lewandowska M, Damato V, Evoli A, Punga AR. Disease specific enrichment of circulating let-7 family microRNA in MuSK+ myasthenia gravis. J Neuroimmunol. 2016;292:21–6.PubMedCrossRefGoogle Scholar
  103. 103.
    Punga AR, Andersson M, Alimohammadi M, Punga T. Disease specific signature of circulating miR-150-5p and miR-21-5p in myasthenia gravis patients. J Neurol Sci. 2015;356:90–6.PubMedCrossRefGoogle Scholar
  104. 104.
    Nogales-Gadea G, Ramos-Fransi A, Suarez-Calvet X, Navas M, Rojas-Garcia R, Mosquera JL, et al. Analysis of serum miRNA profiles of myasthenia gravis patients. PLoS One. 2014;9:e91927.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Chunjie N, Huijuan N, Zhao Y, Jianzhao W, Xiaojian Z. Disease-specific signature of serum miR-20b and its targets IL-8 and IL-25, in myasthenia gravis patients. Eur Cytokine Netw. 2015;26:61–6.PubMedGoogle Scholar
  106. 106.
    Xin Y, Cai H, Lu T, Zhang Y, Yang Y, Cui Y. miR-20b Inhibits T cell proliferation and activation via NFAT signaling pathway in thymoma-associated myasthenia gravis. Biomed Res Int. 2016;2016:9595718.PubMedPubMedCentralGoogle Scholar
  107. 107.
    Lu J, Yan M, Wang Y, Zhang J, Yang H, Tian FF, et al. Altered expression of miR-146a in myasthenia gravis. Neurosci Lett. 2013;555:85–90.PubMedCrossRefGoogle Scholar
  108. 108.
    Zhang J, Jia G, Liu Q, Hu J, Yan M, Yang B, et al. Silencing miR-146a influences B cells and ameliorates experimental autoimmune myasthenia gravis. Immunology. 2015;144:56–67.PubMedCrossRefGoogle Scholar
  109. 109.
    Gilliet M, Cao W, Liu YJ. Plasmacytoid dendritic cells: sensing nucleic acids in viral infection and autoimmune diseases. Nat Rev Immunol. 2008;8:594–606.PubMedCrossRefGoogle Scholar
  110. 110.
    Piccolo G, Franciotta D, Versino M, Alfonsi E, Lombardi M, Poma G. Myasthenia gravis in a patient with chronic active hepatitis C during interferon-alpha treatment. J Neurol Neurosurg Psychiatry. 1996;60:348.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Mase G, Zorzon M, Biasutti E, Vitrani B, Cazzato G, Urban F, et al. Development of myasthenia gravis during interferon-alpha treatment for anti-HCV positive chronic hepatitis. J Neurol Neurosurg Psychiatry. 1996;60:348–9.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Dionisiotis J, Zoukos Y, Thomaides T. Development of myasthenia gravis in two patients with multiple sclerosis following interferon beta treatment. J Neurol Neurosurg Psychiatry. 2004;75:1079.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Batocchi AP, Evoli A, Servidei S, Palmisani MT, Apollo F, Tonali P. Myasthenia gravis during interferon alfa therapy. Neurology. 1995;45:382–3.PubMedCrossRefGoogle Scholar
  114. 114.
    Cavalcante P, Cufi P, Mantegazza R, Berrih-Aknin S, Bernasconi P, Le Panse R. Etiology of myasthenia gravis: innate immunity signature in pathological thymus. Autoimmun Rev. 2013;12:863–74.PubMedCrossRefGoogle Scholar
  115. 115.
    Cizeron-Clairac G, Le Panse R, Frenkian-Cuvelier M, Meraouna A, Truffault F, Bismuth J, et al. Thymus and myasthenia gravis: what can we learn from DNA microarrays? J Neuroimmunol. 2008;201–202:57–63.PubMedCrossRefGoogle Scholar
  116. 116.
    Cufi P, Dragin N, Weiss JM, Martinez-Martinez P, De Baets MH, Roussin R, et al. Implication of double-stranded RNA signaling in the etiology of autoimmune myasthenia gravis. Ann Neurol. 2013;73:281–93.PubMedCrossRefGoogle Scholar
  117. 117.
    Leite MI, Jones M, Strobel P, Marx A, Gold R, Niks E, et al. Myasthenia gravis thymus: complement vulnerability of epithelial and myoid cells, complement attack on them, and correlations with autoantibody status. Am J Pathol. 2007;171:893–905.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Cavalcante P, Barberis M, Cannone M, Baggi F, Antozzi C, Maggi L, et al. Detection of poliovirus-infected macrophages in thymus of patients with myasthenia gravis. Neurology. 2010;74:1118–26.PubMedCrossRefGoogle Scholar
  119. 119.
    Leis AA, Szatmary G, Ross MA, Stokic DS. West nile virus infection and myasthenia gravis. Muscle Nerve. 2014;49(1):26–9.PubMedCrossRefGoogle Scholar
  120. 120.
    Wang YZ, Yan M, Tian FF, Zhang JM, Liu Q, Yang H, et al. Possible involvement of toll-like receptors in the pathogenesis of myasthenia gravis. Inflammation. 2013;36:121–30.PubMedCrossRefGoogle Scholar
  121. 121.
    Bernasconi P, Barberis M, Baggi F, Passerini L, Cannone M, Arnoldi E, et al. Increased toll-like receptor 4 expression in thymus of myasthenic patients with thymitis and thymic involution. Am J Pathol. 2005;167:129–39.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Cavalcante P, Galbardi B, Franzi S, Marcuzzo S, Barzago C, Bonanno S, et al. Increased expression of Toll-like receptors 7 and 9 in myasthenia gravis thymus characterized by active Epstein-Barr virus infection. Immunobiology. 2016;221:516–27.PubMedCrossRefGoogle Scholar
  123. 123.
    Robinet M, Maillard S, Cron MA, Berrih-Aknin S, Le Panse R. Review on Toll-Like receptor activation in myasthenia gravis: application to the development of new experimental models. Clin Rev Allergy Immunol. 2017;52:133–47.PubMedCrossRefGoogle Scholar
  124. 124.
    Meager A, Wadhwa M, Dilger P, Bird C, Thorpe R, Newsom-Davis J, et al. Anti-cytokine autoantibodies in autoimmunity: preponderance of neutralizing autoantibodies against interferon-alpha, interferon-omega and interleukin-12 in patients with thymoma and/or myasthenia gravis. Clin Exp Immunol. 2003;132:128–36.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Cufi P, Soussan P, Truffault F, Fetouchi R, Robinet M, Fadel E, et al. Thymoma-associated myasthenia gravis: On the search for a pathogen signature. J Autoimmun. 2014;52:29–35.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.La Pitié-SalpêtrièreCenter of Research in MyologyParisFrance

Personalised recommendations