Toxic Neuromuscular Transmission Disorders

Part of the Current Clinical Neurology book series (CCNEU)


The neuromuscular junction is uniquely sensitive to the effects of multiple neurotoxins including pharmaceutical, chemical, animal, and plant sources. Unlike the brain and peripheral nerve where tissue barriers prevent excess to neuronal elements, there is no barrier to minimize the risk of these deleterious agents to the neuromuscular junction. Uniformly, with neuromuscular junction toxicity, there is a reduction in the safety factor of synaptic transmission. These may affect either the pre- or postsynaptic elements of the neuromuscular junction. Each toxin has its own specific mechanism of action that results in the defined clinical picture observed. While progress has been made in reducing the incidence of environmental neuromuscular junction toxicity that from pharmacological agents is slowly increasing and must be a concern for the clinician. further, the adaptation of biological, pharmacological, and environmental compounds to agents of war and the broadening expanse of terrorism continue to pose a threat to mankind.


Neurotoxicology Myasthenia gravis Botulism Organophosphates Biological toxins Checkpoint inhibitors Neuromuscular transmission Lambert-Eaton syndrome Synaptic transmission 


  1. 1.
    Fambrough DM, Drachman DB, Satymurti S. Neuromuscular function in myasthenia gravis: decreased acetylcholine receptors. Science. 1973;182:293–5.PubMedCrossRefGoogle Scholar
  2. 2.
    De Aizpurua HJ, Lambert EH, Griesmann GE, Olivera M, Lennon VA. Antagonism of voltage-gated calcium channels in small cell carcinomas of patients with and without Lambert-Eaton myasthenic syndrome by autoantibodies omega-conotoxin and adenosine. Cancer Res. 1988;48:4719–24.PubMedGoogle Scholar
  3. 3.
    Howard JF. Adverse drug interactions in disorders of neuromuscular transmission. J Neurol Orthop Med Surg. 1991;12:26–34.Google Scholar
  4. 4.
    Barrons RW. Drug-induced neuromuscular blockade and myasthenia gravis. Pharmacotherapy. 1997;17:1220–32.PubMedGoogle Scholar
  5. 5.
    Nieman RB, Sharma K, Edelberg H, Caffe SE. Telithromycin and myasthenia gravis. Clin Infect Dis. 2003;37:1579.PubMedCrossRefGoogle Scholar
  6. 6.
    Telithromycin: review of adverse effects. Prescrire Int. 2014;23:264–6.Google Scholar
  7. 7.
    Jones SC, Sorbello A, Boucher RM. Fluoroquinolone-associated myasthenia gravis exacerbation: evaluation of postmarketing reports from the US FDA adverse event reporting system and a literature review. Drug Saf. 2011;34:839–47.PubMedCrossRefGoogle Scholar
  8. 8.
    Pittinger C, Adamson R. Antibiotic blockade of neuromuscular function. Annu Rev Pharmacol. 1972;12:109–84.CrossRefGoogle Scholar
  9. 9.
    Singh YN, Marshall IG, Harvey AL. Reversal of antibiotic-induced muscle paralysis by 3, 4-diaminopyridine. J Pharm Pharmacol. 1978;30:249–50.PubMedCrossRefGoogle Scholar
  10. 10.
    Caputy AJ, Kim YI, Sanders DB. The neuromuscular blocking effects of therapeutic concentrations of various antibiotics on normal rat skeletal muscle: a quantitative comparison. J Pharmacol Exp Ther. 1981;217:369–78.PubMedGoogle Scholar
  11. 11.
    Kaeser HE. Drug-induced myasthenic syndromes. Acta Neurol Scand Suppl. 1984;100:39–47.PubMedGoogle Scholar
  12. 12.
    Telithromycin: visual disorders, myasthenia. Case fatalities: this macrolide has a negative risk-benefit balance; its use not justified. Prescrire Int. 2008;17:66.Google Scholar
  13. 13.
    Roquer J, Cano A, Seoane JL, Pou SA. Myasthenia gravis and ciprofloxacin [letter]. Acta Neurol Scand. 1996;94:419–20.PubMedCrossRefGoogle Scholar
  14. 14.
    Samuelson RJ, Giesecke AHJ, Kallus FT, Stanley VF. Lincomycin-curare interaction. Anesth Analg. 1975;54:103–5.PubMedCrossRefGoogle Scholar
  15. 15.
    Fogdall RP, Miller RD. Prolongation of a pancuronium-induced neuromuscular blockade by clindamycin. Anesthesiology. 1974;41:407–8.PubMedCrossRefGoogle Scholar
  16. 16.
    McQuillen MP, Engbaek L. Mechanism of colistin-induced neuromuscular depression. Arch Neurol. 1975;32:235–8.PubMedCrossRefGoogle Scholar
  17. 17.
    Decker DA, Fincham RW. Respiratory arrest in myasthenia gravis with colistimethate therapy. Arch Neurol. 1971;25:141–4.PubMedCrossRefGoogle Scholar
  18. 18.
    Argov Z, Brenner T, Abramsky O. Ampicillin may aggravate clinical and experimental myasthenia gravis. Arch Neurol. 1986;43:255–6.PubMedCrossRefGoogle Scholar
  19. 19.
    Sieb JP. Fluoroquinolone antibiotics block neuromuscular transmission. Neurology. 1998;50:807.CrossRefGoogle Scholar
  20. 20.
    Sieb JP, Milone M, Engel AG. Effects of the quinoline derivative quinine, quinidine and chloroquine in neuromuscular transmission. Brain Res. 1996;712:179–89.PubMedCrossRefGoogle Scholar
  21. 21.
    Howard JF Jr. Adverse drug effects on neuromuscular transmission. [review] [202 refs]. Semin Neurol. 1990;10:89–102.PubMedCrossRefGoogle Scholar
  22. 22.
    Coppeto JR. Timolol-associated myasthenia gravis. Am J Ophthalmol. 1984;98:244–5.PubMedCrossRefGoogle Scholar
  23. 23.
    Verkijk A. Worsening of myasthenia gravis with timolol maleate eyedrops. Ann Neurol. 1985;17:211–2.PubMedCrossRefGoogle Scholar
  24. 24.
    Howard JF, Johnson BR, Quint SR. The effects of beta-adrenergic antagonists on neuromuscular transmission in rat skeletal muscle. Soc Neurosci Abstr. 1987;13:147.Google Scholar
  25. 25.
    Adams RJ, Rivner MH, Salazar J, Swift TR. Effects of oral calcium antagonists on neuromuscular transmission. Neurology. 1984;34:132–3.CrossRefGoogle Scholar
  26. 26.
    Bikhazi GB, Leung I, Foldes FF. Interaction of neuromuscular blocking agents with calcium channel blockers. Anesthesiology. 1982;57:A268.CrossRefGoogle Scholar
  27. 27.
    Van der Kloot W, Kita H. The effects of verapamil on muscle action potentials in the frog and crayfish and on neuromuscular transmission in the crayfish. Comp Biochem Physiol C. 1975;50C:121–5.Google Scholar
  28. 28.
    Ribera AB, Nastuk WL. The actions of verapamil at the neuromuscular junction. Comp Biochem Physiol C. 1989;93C:137–41.CrossRefGoogle Scholar
  29. 29.
    Krendel DA, Hopkins LC. Adverse effect of verapamil in a patient with the Lambert-Eaton syndrome. Muscle Nerve. 1986;9:519–22.PubMedCrossRefGoogle Scholar
  30. 30.
    Kornfeld P, Horowitz SH, Genkins G, Papatestas AE. Myasthenia gravis unmasked by antiarrhythmic agents. Mt Sinai J Med. 1976;43:10–4.PubMedGoogle Scholar
  31. 31.
    Lecky BR, Weir D, Chong E. Exacerbation of myasthenia by propafenone [letter]. J Neurol Neurosurg Psychiatry. 1991;54:377.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Fierro B, Castiglione MG, Salemi G, Savettieri G. Myasthenia-like syndrome induced by cardiovascular agents. Report of a case. Ital J Neurol Sci. 1987;8:167–9.PubMedCrossRefGoogle Scholar
  33. 33.
    Weisman SJ. Masked myasthenia gravis. JAMA. 1949;141:917–8.CrossRefGoogle Scholar
  34. 34.
    Shy ME, Lange DJ, Howard JF, Gold AP, Lovelace RE, Penn AS. Quinidine exacerbating myasthenia gravis: a case report and intracellular recordings. Ann Neurol. 1985;18:120.Google Scholar
  35. 35.
    Stoffer SS, Chandler JH. Quinidine-induced exacerbation of myasthenia gravis in patient with Graves’ disease. Arch Intern Med. 1980;140:283–4.PubMedCrossRefGoogle Scholar
  36. 36.
    Miller RD, Way WL, Katzung BG. The neuromuscular effects of quinidine. Proc Soc Exp Biol Med. 1968;129:215–8.PubMedCrossRefGoogle Scholar
  37. 37.
    de la Vaissiere S, Toutain A, Chene MA, Lagrue E, Cantagrel S, Provost S, et al. Congenital myasthenic syndromes in childhood: drug therapeutic strategies. Arch Pediatr. 2015;22:724–8.PubMedCrossRefGoogle Scholar
  38. 38.
    O’Riordan J, Javed M, Doherty C, Hutchinson M. Worsening of myasthenia gravis on treatment with imipenem/cilastatin. J Neurol Neurosurg Psychiatry. 1994;57:383.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Cartwright MS, Jeffery DR, Nuss GR, Donofrio PD. Statin-associated exacerbation of myasthenia gravis. Neurology. 2004;63:2188.PubMedCrossRefGoogle Scholar
  40. 40.
    Purvin V, Kawasaki A, Smith KH, Kesler A. Statin-associated myasthenia gravis: report of 4 cases and review of the literature. Medicine. 2006;85:82–5.Google Scholar
  41. 41.
    Oh SJ, Dhall R, Young A, Morgan MB, Lu L, Claussen GC. Statins may aggravate myasthenia gravis. Muscle Nerve. 2008;38:1101–7.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Pasutharnchat N, Phanthumchinda K. Statin-associated myasthenic weakness. J Med Assoc Thail. 2011;94:256–8.Google Scholar
  43. 43.
    Gale J, Danesh-Meyer HV. Statins can induce myasthenia gravis. J Clin Neurosci. 2014;21:195–7.PubMedCrossRefGoogle Scholar
  44. 44.
    Khalid R, Ibad A, Thompson PD. Statins and myasthenia gravis. Muscle Nerve. 2016;54:509.PubMedCrossRefGoogle Scholar
  45. 45.
    de Sousa E, Howard J. More evidence for the association between statins and myasthenia gravis. Muscle Nerve. 2008;38:1085–6.PubMedCrossRefGoogle Scholar
  46. 46.
    du Souich P, Roederer G, Dufour R. Myotoxicity of statins: mechanism of action. Pharmacol Ther. 2017;175:1–16.PubMedCrossRefGoogle Scholar
  47. 47.
    Ramachandran R, Wierzbicki AS. Statins, muscle disease and mitochondria. J Clin Med. 2017;6:75.PubMedCentralCrossRefGoogle Scholar
  48. 48.
    Youssef S, Stuve O, Patarroyo JC, Ruiz PJ, Radosevich JL, Hur EM, et al. The HMG-CoA reductase inhibitor, atorvastatin, promotes a Th2 bias and reverses paralysis in central nervous system autoimmune disease. Nature. 2002;420:78–84.PubMedCrossRefGoogle Scholar
  49. 49.
    Milani M, Ostlie N, Wang W, Conti-Fine BM. T cells and cytokines in the pathogenesis of acquired myasthenia gravis. Ann N Y Acad Sci. 2003;998:284–307.PubMedCrossRefGoogle Scholar
  50. 50.
    Hargreaves IP, Heales S. Statins and myopathy. Lancet. 2002;359:711–2.PubMedCrossRefGoogle Scholar
  51. 51.
    Wierzbicki AS, Poston R, Ferro A. The lipid and non-lipid effects of statins. Pharmacol Ther. 2003;99:95–112.PubMedCrossRefGoogle Scholar
  52. 52.
    Krendel DA. Hypermagnesemia and neuromuscular transmission. Semin Neurol. 1990;10:42–5.PubMedCrossRefGoogle Scholar
  53. 53.
    Castlebaum AR, Donofrio PD, Walker FO, Troost BT. Laxative abuse causing hypermagnesemia quadriparesis and neuromuscular junction defect. Neurology. 1989;39:746–7.CrossRefGoogle Scholar
  54. 54.
    Randall RE, Cohen MD, Spray CC, Rossmeise EC. Hypermagnesemia in renal failure. Ann Intern Med. 1964;61:73–88.PubMedCrossRefGoogle Scholar
  55. 55.
    Collins EN, Russell P. Fatal magnesium poisoning following magnesium sulfate, glycerine and water enema in primary megacolon. Cleve Clin Q. 1949;16:162–6.PubMedCrossRefGoogle Scholar
  56. 56.
    Mordes JP, Wacker WEC. Excess magnesium. Pharmacol Rev. 1978;29:273–300.Google Scholar
  57. 57.
    Flowers CJ. Magnesium in obstetrics. Am J Obstet Gynecol. 1965;91:763–76.PubMedCrossRefGoogle Scholar
  58. 58.
    Lipsitz PJ. The clinical and biochemical effects of excess magnesium in the newborn. Pediatrics. 1971;47:501–9.PubMedGoogle Scholar
  59. 59.
    Pritchard JA. The use of magnesium sulfate in preeclampsia. J Reprod Med. 1979;23:107–14.PubMedGoogle Scholar
  60. 60.
    Singh P, Idowu O, Malik I, Nates JL. Acute respiratory failure induced by magnesium replacement in a 62-year-old woman with myasthenia gravis. Tex Heart Inst J. 2015;42:495–7.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Fishman RA. Neurological aspects of magnesium metabolism. Arch Neurol. 1965;12:562–96.PubMedCrossRefGoogle Scholar
  62. 62.
    Hutter OF, Kostial K. Effect of magnesium ions upon the release of acetylcholine. J Physiol. 1953;120:53P.Google Scholar
  63. 63.
    Swift TR. Weakness from magnesium containing cathartics. Muscle Nerve. 1979;2:295–8.PubMedCrossRefGoogle Scholar
  64. 64.
    Del Castillo J, Engback L. The nature of the neuromuscular block produced by magnesium. J Physiol. 1954;124:370–84.PubMedCentralCrossRefGoogle Scholar
  65. 65.
    De Silva AJC. Magnesium intoxication: an uncommon cause of prolonged curarization. Br J Anaesth. 1973;45:1228–9.PubMedCrossRefGoogle Scholar
  66. 66.
    Ghoneim MM, Long JP. The interaction between magnesium and other neuromuscular blocking agents. Anesthesiology. 1970;32:23–7.PubMedCrossRefGoogle Scholar
  67. 67.
    Cohen BA, London RS, Goldstein PJ. Myasthenia gravis and preeclampsia. Obstet Gynecol. 1976;48:35S–7S.PubMedGoogle Scholar
  68. 68.
    George WK, Han CL. Calcium and magnesium administration in myasthenia gravis. Lancet. 1962;ii:561.CrossRefGoogle Scholar
  69. 69.
    Gutmann L, Takamori M. Effect of Mg++ on neuromuscular transmission in the Eaton-Lambert syndrome. Neurology. 1973;23:977–80.PubMedCrossRefGoogle Scholar
  70. 70.
    Strieb EW. Adverse effects of magnesium salt cathartics in a patient with the myasthenic syndrome. Ann Neurol. 1973;2:175–6.CrossRefGoogle Scholar
  71. 71.
    Bashuk RG, Krendel DA. Myasthenia gravis presenting as weakness after magnesium administration. Muscle Nerve. 1990;13:708–12.PubMedCrossRefGoogle Scholar
  72. 72.
    Valmaggia C, Gottlob IM. Cocaine abuse, generalized myasthenia, complete external ophthalmoplegia, and pseudotonic pupil. Strabismus. 2001;9:9–12.PubMedCrossRefGoogle Scholar
  73. 73.
    Berciano J, Oterino A, Rebollo M, Pascual J. Myasthenia gravis unmasked by cocaine abuse [letter]. N Engl J Med. 1991;325:892.PubMedGoogle Scholar
  74. 74.
    Daras M, Samkoff LM, Koppel BS. Exacerbation of myasthenia gravis associated with cocaine use. Neurology. 1996;46:271–2.PubMedCrossRefGoogle Scholar
  75. 75.
    Venkatesh S, Rao A, Gupta R. Exacerbation of myasthenia gravis with cocaine use [letter]. Muscle Nerve. 1996;19:1364.PubMedGoogle Scholar
  76. 76.
    Krivoshein AV, Hess GP. Mechanism-based approach to the successful prevention of cocaine inhibition of the neuronal (alpha 3 beta 4) nicotinic acetylcholine receptor. Biochemistry. 2004;43:481–9.PubMedCrossRefGoogle Scholar
  77. 77.
    Balint G, Szobor A, Temesvari P, Zahumenszky Z, Bozsoky S. Myasthenia gravis developed under d-penicillamine treatment. Scand J Rheumatol. 1975;4(Suppl 8):12–21.Google Scholar
  78. 78.
    Bucknall RC, Balint G, Dawkins RL. Myasthenia associated with D-penicillamine therapy in rheumatoid arthritis. Scand J Rheumatol Suppl. 1979;8(28):91–3.Google Scholar
  79. 79.
    Czlonskowska A. Myasthenia syndrome during penicillamine treatment. Br Med J. 1975;2:726–7.CrossRefGoogle Scholar
  80. 80.
    Poulas K, Koutsouraki E, Kordas G, Kokla A, Tzartos SJ. Anti-MuSK- and anti-AChR-positive myasthenia gravis induced by d-penicillamine. J Neuroimmunol. 2012;250:94–8.PubMedCrossRefGoogle Scholar
  81. 81.
    Masters CL, Dawkins RL, Zilko PJ, Simpson JA, Leedman RJ. Penicillamine-associated myasthenia gravis, antiacetylcholine receptor and antistriational antibodies. Am J Med. 1977;63:689–94.PubMedCrossRefGoogle Scholar
  82. 82.
    Albers JW, Beals CA, Levine SP. Neuromuscular transmission in rheumatoid arthritis, with and without penicillamine treatment. Neurology. 1981;31:1562–4.PubMedCrossRefGoogle Scholar
  83. 83.
    Varan O, Kucuk H, Tufan A. Myasthenia gravis due to hydroxychloroquine. Reumatismo. 2015;67:849.PubMedGoogle Scholar
  84. 84.
    O’Riordan J, Javed M, Doherty C, Hutchinson M. Worsening of myasthenia gravis on treatment with imipenem/cilastatin [letter]. J Neurol Neurosurg Psychiatry. 1994;57:383.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Parmar B, Francis PJ, Ragge NK. Statins, fibrates, and ocular myasthenia. Lancet. 2002;360:717.PubMedCrossRefGoogle Scholar
  86. 86.
    Robberecht W, Bednarik J, Bourgeois P, Van Hees J, Carton H. Myasthenic syndrome caused by direct effect of chloroquine on neuromuscular junction. Arch Neurol. 1989;46:464–8.PubMedCrossRefGoogle Scholar
  87. 87.
    Fife BT, Bluestone JA. Control of peripheral T-cell tolerance and autoimmunity via the CTLA-4 and PD-1 pathways. Immunol Rev. 2008;224:166–82.PubMedCrossRefGoogle Scholar
  88. 88.
    Li B, Chan HL, Chen P. Immune checkpoint inhibitors: basics and challenges. Curr Med Chem. 2017;24:1–15.Google Scholar
  89. 89.
    de Miguel-Luken MJ, Mansinho A, Boni V, Calvo E. Immunotherapy-based combinations: current status and perspectives. Curr Opin Oncol. 2017;29:382–94.PubMedCrossRefGoogle Scholar
  90. 90.
    Roberts K, Culleton V, Lwin Z, O’Byrne K, Hughes BG. Immune checkpoint inhibitors: navigating a new paradigm of treatment toxicities. Asia Pac J Clin Oncol. 2017;13:277–88.PubMedCrossRefGoogle Scholar
  91. 91.
    Cousin S, Italiano A. Toxicity profiles of immunotherapy. Pharmacol Ther. 2018;181:91–100.Google Scholar
  92. 92.
    Makarious D, Horwood K, Coward JIG. Myasthenia gravis: an emerging toxicity of immune checkpoint inhibitors. Eur J Cancer. 2017;82:128–36.PubMedCrossRefGoogle Scholar
  93. 93.
    Chang E, Sabichi AL, Sada YH. Myasthenia gravis after nivolumab therapy for squamous cell carcinoma of the bladder. J Immunother. 2017;40:114–6.PubMedCrossRefGoogle Scholar
  94. 94.
    Cooper DS, Meriggioli MN, Bonomi PD, Malik R. Severe exacerbation of myasthenia gravis associated with checkpoint inhibitor immunotherapy. J Neuromuscul Dis. 2017;4:169–73.PubMedCrossRefGoogle Scholar
  95. 95.
    Gonzalez NL, Puwanant A, Lu A, Marks SM, Živković SA. Myasthenia triggered by immune checkpoint inhibitors: new case and literature review. Neuromuscul Disord. 2017;27:266–8.PubMedCrossRefGoogle Scholar
  96. 96.
    Kimura T, Fukushima S, Miyashita A, Aoi J, Jinnin M, Kosaka T, et al. Myasthenic crisis and polymyositis induced by one dose of nivolumab. Cancer Sci. 2016;107:1055–8.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Konoeda F, Suzuki S, Nishimoto Y, Hoshino H, Takagi M. A case of myasthenia gravis and myositis induced by nivolumab. Rinsho Shinkeigaku. 2017;57:373–7.PubMedCrossRefGoogle Scholar
  98. 98.
    Lau KH, Kumar A, Yang IH, Nowak RJ. Exacerbation of myasthenia gravis in a patient with melanoma treated with pembrolizumab. Muscle Nerve. 2016;54:157–61.PubMedCrossRefGoogle Scholar
  99. 99.
    Nguyen BH, Kuo J, Budiman A, Christie H, Ali S. Two cases of clinical myasthenia gravis associated with pembrolizumab use in responding melanoma patients. Melanoma Res. 2017;27:152–4.PubMedCrossRefGoogle Scholar
  100. 100.
    Phadke SD, Ghabour R, Swick BL, Swenson A, Milhem M, Zakharia Y. Pembrolizumab therapy triggering an exacerbation of preexisting autoimmune disease: a report of 2 patient cases. J Investig Med High Impact Case Rep. 2016;4:2324709616674316.PubMedPubMedCentralGoogle Scholar
  101. 101.
    Shirai T, Sano T, Kamijo F, Saito N, Miyake T, Kodaira M, et al. Acetylcholine receptor binding antibody-associated myasthenia gravis and rhabdomyolysis induced by nivolumab in a patient with melanoma. Jpn J Clin Oncol. 2016;46:86–8.PubMedCrossRefGoogle Scholar
  102. 102.
    Suzuki S, Ishikawa N, Konoeda F, Seki N, Fukushima S, Takahashi K, et al. Nivolumab-related myasthenia gravis with myositis and myocarditis in Japan. Neurology. 2017;89(11):1127–34. Scholar
  103. 103.
    Saleem A. Unmasking of myasthenia gravis during pegylated Alfa 2 a interferon and ribavirin therapy for chronic hepatitis C. J Pak Med Assoc. 2016;66:618–20.PubMedGoogle Scholar
  104. 104.
    Baik SJ, Kim TH, Kim HI, Rhie JY. Myasthenia crisis induced by pegylated-interferon in patient with chronic hepatitis C: a case report. Medicine. 2016;95:e3782.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Congeni JP, Kirkpatrick RB. Pegylated interferon induced myasthenia crisis—a case report. J Clin Neuromuscul Dis. 2013;14:123–5.PubMedCrossRefGoogle Scholar
  106. 106.
    Kang HM, Park MJ, Hwang JM, Kim JW, Jeong SH. Development of ocular myasthenia during pegylated interferon and ribavirin treatment for chronic hepatitis C. Korean J Hepatol. 2009;15:209–15.PubMedCrossRefGoogle Scholar
  107. 107.
    Wolfe CM, Tafuri N, Hatfield K. Exacerbation of myasthenia gravis during imiquimod treatment. J Drugs Dermatol. 2007;6:745–6.PubMedGoogle Scholar
  108. 108.
    Borgia G, Reynaud L, Gentile I, Cerini R, Ciampi R, Dello Russo M, et al. Myasthenia gravis during low-dose IFN-alpha therapy for chronic hepatitis C. J Interf Cytokine Res. 2001;21:469–70.CrossRefGoogle Scholar
  109. 109.
    Konishi T. [A case of myasthenia gravis which developed myasthenic crisis after alpha-interferon therapy for chronic hepatitis C]. [Review] [14 refs] [Japanese]. Rinsho Shinkeigaku Clin Neurol. 1996;36:980–5.Google Scholar
  110. 110.
    Selmi C, Lleo A, Zuin M, Podda M, Rossaro L, Gershwin ME. Interferon alpha and its contribution to autoimmunity. Curr Opin Investig Drugs. 2006;7:451–6.PubMedGoogle Scholar
  111. 111.
    Gu D, Wogensen L, Calcutt N, Xia C, Zhu S, Merlie JP, et al. Myasthenia gravis-like syndrome induced by expression of interferon in the neuromuscular junction. J Exp Med. 1995;18:547–57.CrossRefGoogle Scholar
  112. 112.
    Glick ZR, Vaphiades MS, Northington ME. Onabotulinumtoxin a unmasking myasthenia gravis. Dermatol Surg. 2013;39:472–3.PubMedCrossRefGoogle Scholar
  113. 113.
    Erbguth F, Claus D, Engelhardt A, Dressler D. Systemic effect of local botulinum toxin injections unmasks subclinical Lambert-Eaton myasthenic syndrome. J Neurol Neurosurg Psychiatry. 1993;56:1235–6.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Iwase T, Iwase C. Systemic effect of local and small-dose botulinum toxin injection to unmask subclinical myasthenia gravis. Graefes Arch Clin Exp Ophthalmol. 2006;244:415–6.PubMedCrossRefGoogle Scholar
  115. 115.
    Watts J, Brew B, Tisch S. Myasthenia gravis exacerbation with low dose ocular botulinum toxin for epiphoria. J Clin Neurosci. 2015;22:1979–81.PubMedCrossRefGoogle Scholar
  116. 116.
    Tarsy D, Bhattacharyya N, Borodic G. Myasthenia gravis after botulinum toxin a for Meige syndrome. Mov Disord. 2000;15:736–8.PubMedCrossRefGoogle Scholar
  117. 117.
    Borodic G. Myasthenic crisis after botulinum toxin. Lancet. 1998;352:1832.PubMedCrossRefGoogle Scholar
  118. 118.
    Goncalves MR, Barbosa ER, Zambon AA, Marchiori PE. Treatment of cervical dystonia with botulinum toxin in a patient with myasthenia gravis. Arq Neuropsiquiatr. 1999;57:683–5.PubMedCrossRefGoogle Scholar
  119. 119.
    Fasano A, Bentivoglio AR, Ialongo T, Soleti F, Evoli A. Treatment with botulinum toxin in a patient with myasthenia gravis and cervical dystonia. Neurology. 2005;64:2155–6.PubMedCrossRefGoogle Scholar
  120. 120.
    Cherington M. Clinical spectrum of botulism. Muscle Nerve. 1998;21:701–10.PubMedCrossRefGoogle Scholar
  121. 121.
    Jackson L, Madan-Khetarpal S, Naik M, Michaels MG, Riley M. Infant botulism in the very young neonate: a case series. AJP Rep. 2017;7:e163–6.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Pickett J, Berg B, Chaplin E, Brunstetter-Shafer M. Syndrome of botulism in infancy: clinical and electrophysiologic study. N Engl J Med. 1976;295:770–92.PubMedCrossRefGoogle Scholar
  123. 123.
    MacDonald KL, Rutherford SM, Friedman SM, Dietz JR, Kaye BR, McKinley GF, et al. Botulism and botulism-like illness in chronic drug users. Ann Intern Med. 1985;102:616–8.PubMedCrossRefGoogle Scholar
  124. 124.
    Abavare L, Abavare C. Wound botulism resulting from heroin abuse: can you recognize it? J Emerg Nurs. 2012;38:301–3.PubMedCrossRefGoogle Scholar
  125. 125.
    Martin SJ, Penrice G, Amar C, Grant K, Gorrie GH. Wound botulism, its neurological manifestations, treatment and outcomes: a case series from the Glasgow outbreak, 2015. Scott Med J. 2017;62(4):136–41. Scholar
  126. 126.
    Qureshi IA, Qureshi MA, Rauf Afzal M, Maud A, Rodriguez GJ, Cruz-Flores S, et al. Black tar heroin skin popping as a cause of wound botulism. Neurocrit Care. 2017;27(3):415–9.PubMedCrossRefGoogle Scholar
  127. 127.
    Griffin PM, Hatheway CL, Rosenbaum RB, Sokolow R. Endogenous antibody production to botulinum toxin in an adult with intestinal colonization botulism and underlying Crohn’s disease. J Infect Dis. 1997;175:633–7.PubMedCrossRefGoogle Scholar
  128. 128.
    Chia JK, Clark JB, Ryan CA, Pollack M. Botulism in an adult associated with food-borne intestinal infection with clostridium botulinum. N Engl J Med. 1986;315:239–41.PubMedCrossRefGoogle Scholar
  129. 129.
    McCroskey LM, Hatheway CL, Woodruff BA, Greenberg JA, Jurgenson P, Type F. Botulism due to neurotoxigenic Clostridium baratii from an unknown source in an adult. J Clin Microbiol. 1991;29:2618–20.PubMedPubMedCentralGoogle Scholar
  130. 130.
    Maretic Z. Epidemiology of envenomation. In: Bettini S, editor. Arthropod venoms. Berlin: Springer; 1978. p. 185–212.Google Scholar
  131. 131.
    Rosenthal L. Alpha-latrotoxin and related toxins. Pharmacol Ther. 1989;42:115–34.PubMedCrossRefGoogle Scholar
  132. 132.
    Hurlbut WP, Iezzi N, Fesce R, Ceccarelli B. Correlation between quantal secretion and vesicle loss at the frog neuromuscular junction. J Physiol. 1990;424:501–26.CrossRefGoogle Scholar
  133. 133.
    Henkel AW, Sankaranarayanan S. Mechanisms of a-latrotoxin action. Cell Tissue Res. 1999;296:229–33.PubMedCrossRefGoogle Scholar
  134. 134.
    Ushkaryov YA, Petrenko AG, Geppert M, Sudhof TC. Neurexins: synaptic cell surface proteins related to the a-lathrotoxin receptor and laminin. Science. 1992;257:50–6.PubMedCrossRefGoogle Scholar
  135. 135.
    Longenecker HE, Hurlbut WP, Mauro A, Clark AW. Effects of black widow spider venom on the frog neuromuscular junction. Effects on end-plate potential, miniature end-plate potential and nerve terminal spike. Nature. 1970;225:701–3.PubMedCrossRefGoogle Scholar
  136. 136.
    Ceccarelli B, Grohovaz F, Hurlbut WP. Freeze-fracture studies of frog neuromuscular junctions during intense release of neurotransmitter. I. Effects of black widow spider venom and Ca2+-free solutions on the structure of the active zone. J Cell Biol. 1979;81:163–77.PubMedCrossRefGoogle Scholar
  137. 137.
    Clark AW, Hurlbut WP, Mauro A. Changes in the fine structure of the neuromuscular junction of the frog caused by black widow spider venom. J Cell Biol. 1972;52:1–14.PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Clark AW, Mauro A, He L, Hurlbut WP. Effects of black widow spider venom on the frog neuromuscular junction. Effects on the fine structure of the frog neuromuscular junction. Nature. 1970;225:703–5.PubMedCrossRefGoogle Scholar
  139. 139.
    Gorio A, Rubin LL, Mauro A. Double mode of action of black widow spider venom on frog neuromuscular junction. J Neurocytol. 1978;7:193–202.PubMedCrossRefGoogle Scholar
  140. 140.
    Howard BD. Effects and mechanisms of polypeptide neurotoxins that act presynaptically. Annu Rev Pharmacol Toxicol. 1980;20:307–36.PubMedCrossRefGoogle Scholar
  141. 141.
    Gilbert WW, Stewart CM. Effective treatment of arachiodism by calcium salts. Am J Med Sci. 1935;189:532–6.CrossRefGoogle Scholar
  142. 142.
    Miller TA. Bite of the black widow spider. Am Fam Physician. 1992;45:181–7.PubMedGoogle Scholar
  143. 143.
    D’Amour EF, Becker FE, Van Riper W. The black widow spider. Q Rev Med. 1936;11:123–60.Google Scholar
  144. 144.
    Temple IU. Acute ascending paralysis, or tick paralysis. Med Sentinel. 1912;20:507–14.Google Scholar
  145. 145.
    Todd JL. Tick bite in British Columbia. CMAJ. 1912;2:1118–9.Google Scholar
  146. 146.
    Cleland JB. Injuries and diseases of man in Australia attributable to animals (except insects). Australas Med Gaz. 1912;32:295–9.Google Scholar
  147. 147.
    Gregson JD. Tick paralysis—an appraisal of natural and experimental data 1973. Canada: Department of Agriculture; 1973.Google Scholar
  148. 148.
    Edlow JA. Tick paralysis. Curr Treat Options Neurol. 2010;12:167–77.PubMedCrossRefGoogle Scholar
  149. 149.
    Gothe R, Kunze K, Hoogstraal H. The mechanisms of pathogenicity in the tick paralyses. J Med Entomol. 1979;16:357–69.PubMedCrossRefGoogle Scholar
  150. 150.
    Anonymous. Tick paralysis—Washington, 1995. From the centers for disease control and prevention. JAMA. 1996;275:1470.Google Scholar
  151. 151.
    Weingart JL. Tick paralysis. Minn Med. 1967;50:383–6.PubMedGoogle Scholar
  152. 152.
    Brown AF, Hamilton DL. Tick bite anaphylaxis in Australia. J Accid Emerg Med. 1998;15:111–3.PubMedPubMedCentralCrossRefGoogle Scholar
  153. 153.
    Felz MW, Smith CD, Swift TR. A six-year-old girl with tick paralysis [see comments]. N Engl J Med. 2000;342:90–4.PubMedCrossRefGoogle Scholar
  154. 154.
    Cherington M, Snyder RD. Tick paralysis: neurophysiological studies. N Engl J Med. 1968;278:95–7.PubMedCrossRefGoogle Scholar
  155. 155.
    Swift TR, Ignacio OJ. Tick paralysis: electrophysiologic studies. Neurology. 1975;25:1130–3.PubMedCrossRefGoogle Scholar
  156. 156.
    Grattan-Smith PJ, Morris JG, Johnston HM, Yiannikas C, Malik R, Russell R, et al. Clinical and neurophysiological features of tick paralysis. Brain. 1997;120:1975–87.PubMedCrossRefGoogle Scholar
  157. 157.
    Donat JR, Donat JF. Tick paralysis with persistent weakness and electromyographic abnormalities. Arch Neurol. 1981;38:59–61.PubMedCrossRefGoogle Scholar
  158. 158.
    Lagos JC, Thies RE. Tick paralysis without muscle weakness. Arch Neurol. 1969;21:471–4.PubMedCrossRefGoogle Scholar
  159. 159.
    Rose IA. Review of tick paralysis. Can Med Assoc J. 1954;70:175–6.PubMedPubMedCentralGoogle Scholar
  160. 160.
    Dworkin MS, Shoemaker PC, Anderson DE. Tick paralysis: 33 human cases in Washington state, 1946–1996. Clin Infect Dis. 1999;29:1435–9.PubMedCrossRefGoogle Scholar
  161. 161.
    Jones HR Jr. Guillain-Barre syndrome: perspectives with infants and children. Semin Pediatr Neurol. 2000;7:91–102.PubMedCrossRefGoogle Scholar
  162. 162.
    Stanbury JB, Huyck JH. Tick paralysis: critical review. Medicine. 1945;24:219–42.CrossRefGoogle Scholar
  163. 163.
    Stone BF, Aylward JH. Holocyclotoxin—the paralysing toxin of the Australian paralysis tick Ixodes holocyclus; chemical and immunological characterization. Toxicon. 1992;30:552–3.Google Scholar
  164. 164.
    Rose I, Gregson JD. Evidence of neuromuscular block in tick paralysis. Nature. 1959;178:95–6.CrossRefGoogle Scholar
  165. 165.
    Gothe R, Neitz AWH. Tick paralyses: pathogenesis and etiology. Adv Dis Vector Res. 1991;8:177–204.CrossRefGoogle Scholar
  166. 166.
    Stone BF. Tick paralysis, particularly involving Ixodes holocyclus and other Ixodes species. Adv Dis Vector Res. 1988;5:61–85.Google Scholar
  167. 167.
    Esplin DW, Phillip CB, Hughes LE. Impairment of muscle stretch reflexes in tick paralysis. Science. 1960;132:958–9.PubMedCrossRefGoogle Scholar
  168. 168.
    DeBusk FL, O’Connor S. Tick toxicosis. Pediatrics. 1972;50:328–9.PubMedGoogle Scholar
  169. 169.
    Haller JS, Fabara JA. Tick paralysis. Case report with emphasis on neurological toxicity. Am J Dis Child. 1972;124:915–7.PubMedCrossRefGoogle Scholar
  170. 170.
    Lin J, Verma S. Electrodiagnostic abnormalities in tick paralysis: a case report and review of literature. J Clin Neuromuscul Dis. 2016;17:215–9.PubMedCrossRefGoogle Scholar
  171. 171.
    Zhang S, Gao B, Zhu S. Target-driven evolution of scorpion toxins. Sci Rep. 2015;5:14973.PubMedPubMedCentralCrossRefGoogle Scholar
  172. 172.
    Warnick JE, Albuquerque EX, Diniz CR. Electrophysiological observations on the action of the purified scorpion venom, Tityus-toxin, on nerve and skeletal muscle of the rat. J Pharmacol Exp Ther. 1976;198:155–67.PubMedGoogle Scholar
  173. 173.
    Sofer S, Shahak E, Gueron M. Scorpion envenomation and antivenom therapy. Pediatrics. 1994;124:973–8.CrossRefGoogle Scholar
  174. 174.
    Belghith M, Boussarsar M, Haguiga H, Besbes L, Elatrous S, Touzi N, et al. Efficacy of serotherapy in scorpion sting: a matched-pair study. J Toxicol Clin Toxicol. 1999;37:51–7.PubMedCrossRefGoogle Scholar
  175. 175.
    The Lancet. Snake-bite envenoming: a priority neglected tropical disease. Lancet. 2017;390:2.Google Scholar
  176. 176.
    Chippaux JP. Incidence and mortality due to snakebite in the Americas. PLoS Negl Trop Dis. 2017;11:e0005662.PubMedPubMedCentralCrossRefGoogle Scholar
  177. 177.
    Campbell CH. The effects of snake venoms and their neurotoxins on the nervous system of man and animals. Contemp Neurol Ser. 1975;12:259–93.PubMedGoogle Scholar
  178. 178.
    Vital-Brazil O. Venoms: their inhibitory action on neuromuscular transmission. In: Cheymol J, editor. Neuromuscular blocking and stimulating agents. New York: Pergamon Press; 1972. p. 145–67.Google Scholar
  179. 179.
    Lee CY. Elapid neurotoxins and their mode of action. Clin Toxicol. 1970;3:457–72.PubMedCrossRefGoogle Scholar
  180. 180.
    Karlsson E, Arnberg H, Eaker D. Isolation of the principal neurotoxin of tow Naja naja subspecies. Eur J Biochem. 1971;21:1–16.PubMedCrossRefGoogle Scholar
  181. 181.
    Lee CY, Chang SL, Kau ST, Luh SH. Chromatographic separation of the venon of Bungarus multicinctus and characteristics of its components. J Chromatogr. 1972;72:71–82.PubMedCrossRefGoogle Scholar
  182. 182.
    Barme M. Venomous sea snakes of Vietnam and their venoms. In: Keegan HL, MacFarlane W, editors. Venomous and poisonous animals and noxious plants of the Pacific region. Oxford: Pergamon Press; 1963. p. 373–8.Google Scholar
  183. 183.
    Tu AT, Tuh T. Sea snakes from southeast Asia and far east and their venoms. In: Halstead BW, editor. Poisonous and venomous marine animals of the world. Washington, DC: US Government Printing Office; 1970. p. 885–903.Google Scholar
  184. 184.
    Karlsson E. Chemistry of protein toxins in snake venoms. In: Lee CY, editor. Snake venoms. New York: Springer; 1979. p. 159–212.CrossRefGoogle Scholar
  185. 185.
    Chang CC, Su MJ. Mutual potentiation a nerve terminals, between toxins from snake venoms that contain phospholipase a activity: b-bungarotoxin, crotoxin, taipoxin. Toxicon. 1980;18:641–8.PubMedCrossRefGoogle Scholar
  186. 186.
    Kellaway CH. The peripheral action of the Australian snake venoms. 2. The curari-like action in mammals. Aust J Exp Biol Med Sci. 1932;10:181–94.CrossRefGoogle Scholar
  187. 187.
    Rowlands JB, Mastaglia FL, Kakulas BA, Hainsworth D. Clinical and pathological aspects of a fatal case of mulga (Pseudechis Australis) snakebite. Med J Aust. 1969;1:226–30.PubMedGoogle Scholar
  188. 188.
    Bouquier JJ, Guibert J, Dupont C, Umdenstock R. Les piqures de vipere chez l’enfant. Arch Fr Pediatr. 1974;31:285–96.PubMedGoogle Scholar
  189. 189.
    Mitrakul C, Dhamkrong-At A, Futrakul P, Thisyakorn C, Vongsrisart K, Varavithya C, et al. Clinical features of neurotoxic snake bite and response to antivenom in 47 children. Am J Trop Med Hyg. 1984;33:1258–66.PubMedCrossRefGoogle Scholar
  190. 190.
    Reid HA. Cobra-bites. Br Med J. 1964;2:540–5.PubMedPubMedCentralCrossRefGoogle Scholar
  191. 191.
    Warrell DA, Barnes HJ, Piburn MF. Neurotoxic effects of bites by the Egyptian cobra (Naja Haje) in Nigeria. Trans R Soc Trop Med Hyg. 1976;70:78–9.PubMedCrossRefGoogle Scholar
  192. 192.
    Kerrigan KR. Venomous snake bites in eastern Ecuador. Am J Trop Med Hyg. 1991;44:93–9.PubMedCrossRefGoogle Scholar
  193. 193.
    Ouyang C, Teng C-M, Huang T-F. Characterization of snake venom components acting on blood coagulation and platelet function. Toxicon. 1992;30:945–66.PubMedCrossRefGoogle Scholar
  194. 194.
    Johnston CI, Ryan NM, Page CB, Buckley NA, Brown SG, O’Leary MA, et al. The Australian snakebite project, 2005–2015 (ASP-20). Med J Aust. 2017;207:119–25.PubMedCrossRefGoogle Scholar
  195. 195.
    Kumar S, Usgaonkar RS. Myasthenia gravis like picture resulting from snake bite. J Indian Med Assoc. 1968;50:428–9.PubMedGoogle Scholar
  196. 196.
    Pettigrew LC, Glass JP. Neurologic complications of coral snake bite. Neurology. 1985;35:589–92.PubMedCrossRefGoogle Scholar
  197. 197.
    Southcott RV. The neurologic effects of noxious marine creatures. In: Hornabrook RW, editor. Topics on tropical neurology. Philadelphia: F.A. Davis Company; 1975. p. 165–258.Google Scholar
  198. 198.
    Steidinger KA, Steinfield HJ. Toxic marine dinoflagellates. In: Spector DL, editor. Dinoflagellates. New York: Academic Press; 1984. p. 201–6.CrossRefGoogle Scholar
  199. 199.
    Gallagher JP, Shinnick-Gallagher P. Effects of crude brevetoxin on membrane potential and spontaneous or evoked end-plate potentials in rat hemidiaphragm. Toxicon. 1985;23:489–96.PubMedCrossRefGoogle Scholar
  200. 200.
    Tsai MC, Chou HN, Chen ML. Effect of brevetoxin-B on the neuromuscular transmission of the mouse diaphragm. J Formos Med Assoc. 1991;90:431–6.PubMedGoogle Scholar
  201. 201.
    Molgo J, Marchot P, Araoz R, Benoit E, Iorga BI, Zakarian A, et al. Cyclic imine toxins from dinoflagellates: a growing family of potent antagonists of the nicotinic acetylcholine receptors. J Neurochem. 2017;142(Suppl 2):41–51.PubMedCrossRefGoogle Scholar
  202. 202.
    Robertson A, Garcia AC, Quintana HA, Smith TB, Castillo BF 2nd, Reale-Munroe K, et al. Invasive lionfish (Pterois Volitans): a potential human health threat for ciguatera fish poisoning in tropical waters. Mar Drugs. 2013;12:88–97.PubMedPubMedCentralCrossRefGoogle Scholar
  203. 203.
    Olivera BM, Gray WR, Zeikus R, et al. Peptide neurotoxins from fish-hunting cone snails. Science. 1985;230:1338–43.PubMedCrossRefGoogle Scholar
  204. 204.
    Kohn AJ. Recent cases of human injury due to venomous marine snails of the genus Conus. Hawaii Med J. 1958;17:528–32.PubMedGoogle Scholar
  205. 205.
    Kohn AJ. Venomous marine snails of the genus Conus. In: Keegan HC, McFarlane WV, editors. Venomous and poisonous animals and noxious plants of the Pacific region. Oxford: Permagon Press; 1963. p. 1–456.Google Scholar
  206. 206.
    Cruz LJ, White J. Clinical toxicology of Conus snail stings. In: Meier J, White J, editors. CRC handbook on clinical toxicology of animal venoms and poisons. Boca Raton: CRC Press; 1995.Google Scholar
  207. 207.
    Gray WR, Luque A, Olivera BM, Barrett J, Cruz LJ. Peptide toxins from Conus geographus venom. J Biol Chem. 1981;256:4734–40.PubMedGoogle Scholar
  208. 208.
    Hopkins C, Grilley M, Miller C, Shon KJ, Cruz LJ, Gray WR, et al. A new family of Conus peptides targeted tothe nicotinic acetylcholine receptor. J Biol Chem. 1995;270:22361–7.PubMedCrossRefGoogle Scholar
  209. 209.
    McIntosh M, Cruz LJ, Hunkapiller MW, Gray WR, Olivera BM. Isolation and structure of a peptide toxin from the marine snail Conus magnus. Arch Biochem Biophys. 1982;218:329–34.PubMedCrossRefGoogle Scholar
  210. 210.
    McCleskey EW, Fox AP, Feldman D, Cruz LJ, Olivera BM, Tsien RW, et al. Calcium channel blockade by a peptide from Conus: specificity and mechanism. Proc Natl Acad Sci U S A. 1987;84:4327–31.PubMedPubMedCentralCrossRefGoogle Scholar
  211. 211.
    Adams DJ, Alewood PF, Craik DJ, Drinkwater RD, Lewis RJ. Conotoxins and their potential pharmaceutical applications. Drug Dev Res. 1999;46:219–34.CrossRefGoogle Scholar
  212. 212.
    Robinson SD, Li Q, Lu A, Bandyopadhyay PK, Yandell M, Olivera BM, et al. The venom repertoire of Conus Gloriamaris (Chemnitz, 1777), the glory of the sea. Mar Drugs. 2017;15:145.PubMedCentralCrossRefGoogle Scholar
  213. 213.
    Yoshiba S. [An estimation of the most dangerous species of cone shell, Conus (Gastridium) geographus Linne, 1758, venom’s lethal dose in humans]. J Hyg. 1984;39:565–72.Google Scholar
  214. 214.
    Halstead BW. Poisonous and venomous marine animals of the world. Washington, DC: US Government Printing Office; 1970.Google Scholar
  215. 215.
    Gwee MC, Gopalakrishnakone P, Yuen R, Khoo HE, Low KS. A review of stonefish venoms and toxins. Pharmacol Ther. 1994;64:509–28.PubMedCrossRefGoogle Scholar
  216. 216.
    Kreger AS, Molgo J, Comella JX, Hansson B, Thesleff S. Effects of stonefish (Synanceia trachynis) venom on murine and frog neuromuscular junctions. Toxicon. 1993;31:307–17.PubMedCrossRefGoogle Scholar
  217. 217.
    Hardin JW, Arena JW. Human poisoning from native and cultivated plants. 1st ed. Durham, NC: Duke University Press; 1974.Google Scholar
  218. 218.
    Davies M, Davies TA. Hemlock: murder before the Lord. Med Sci Law. 1994;34:331–3.PubMedCrossRefGoogle Scholar
  219. 219.
    Panter KE, Keeler RF. Piperidine alkaloids of poison hemlock (Conium maculatum). In: Cheeke P, editor. Toxicants of plant origin: alkaloids, vol. 1. Boca Raton: CRC Press; 1989.Google Scholar
  220. 220.
    Schep LJ, Slaughter RJ, Beasley DM. Nicotinic plant poisoning. Clin Toxicol. 2009;47:771–81.CrossRefGoogle Scholar
  221. 221.
    Green BT, Lee ST, Welch KD, Panter KE. Plant alkaloids that cause developmental defects through the disruption of cholinergic neurotransmission. Birth Defects Res C Embryo Today. 2013;99:235–46.PubMedCrossRefGoogle Scholar
  222. 222.
    Silinsky EM. On the role of barium in supporting the asynchronous release of acetylcholine quanta by motor nerve impulses. J Physiol. 1978;274:157–71.PubMedPubMedCentralCrossRefGoogle Scholar
  223. 223.
    Silinsky EM. Can barium support the release of acetylcholine by nerve impulses? Br J Pharmacol. 1977;59:215–7.PubMedPubMedCentralCrossRefGoogle Scholar
  224. 224.
    Metral S, Bonneton C, Hort-Legrand C, Reynes J. Dual action of erbium on transmitter release at the from neuromuscular synapse. Nature. 1978;271:773–5.PubMedCrossRefGoogle Scholar
  225. 225.
    Cooper GP, Manalis RS. Cadmium: effects on transmitter release a the frog neuromuscular junction. Eur J Pharmacol. 1984;99:251–6.PubMedCrossRefGoogle Scholar
  226. 226.
    Forshaw PJ. The inhibitory effect of cadmium on neuromuscular transmission in the rat. Eur J Pharmacol. 1977;42:371–7.PubMedCrossRefGoogle Scholar
  227. 227.
    Weakly JN. The action of cobalt ions on neruomusculal transmission in the frog. J Physiol. 1973;234:597–612.PubMedPubMedCentralCrossRefGoogle Scholar
  228. 228.
    Molgo J, del Pozo E, Banos JE, Angaut-Petit D. Changes in quantal transmitter release caused by gadolinium ions at the frog neuromuscular junction. Br J Pharmacol. 1991;104:133–8.PubMedPubMedCentralCrossRefGoogle Scholar
  229. 229.
    Kajimoto N, Kirpekar SM. Effects of manganese and lanthanum on spontaneous release of acetylcholine at frog motor nerve terminals. Nature. 1972;235:29–30.Google Scholar
  230. 230.
    Balnave RJ, Gage PW. The inhibitory effect of manganese on transmitter release at the neuromuscular junction of the toad. Br J Pharmacol. 1973;47:339–52.PubMedPubMedCentralCrossRefGoogle Scholar
  231. 231.
    Kita H, Van der Kloot W. Action of Co and Ni at the frog neuromuscular junction. Nature. 1973;245:52–3.CrossRefGoogle Scholar
  232. 232.
    Alnaes E, Rahaminoff R. Dual action of praseodymium (Pr3+) on transmitter release at the frog neuromuscular synapse. Nature. 1975;247:478–9.CrossRefGoogle Scholar
  233. 233.
    Allen JE, Gage PW, Leaver DD, Leow ACT. Triethyltin decreases evoked transmitter release at the mouse neuromuscular junction. Chem Biol Interact. 1980;31:227–31.PubMedCrossRefGoogle Scholar
  234. 234.
    Benoit PR, Mambrini J. Modification of transmitter release by ions which prolong the presynaptic action potential. J Physiol. 1970;210:681–95.PubMedPubMedCentralCrossRefGoogle Scholar
  235. 235.
    Cooper GP, Manalis RS. Influence of heavy metals on synaptic transmission. Neurotoxicology. 2001;4:69–84.Google Scholar
  236. 236.
    Rustam H, Hamdi T. Methylmercury poisoning n Iraq; a neurological study. Brain. 1974;97:499–510.CrossRefGoogle Scholar
  237. 237.
    Bakir F, Damluji SF, Amin-Saki L, et al. Methylmercury poisoning in Iraq. Science. 1973;181:230–41.PubMedCrossRefGoogle Scholar
  238. 238.
    Igata A. Neurological aspects of methylmercury poisoning in Minamata. In: Tsubaki T, Takahashi H, editors. Recent advances in Minamata disease studies. Tokyo: Kodansha; 1986. p. 41–57.Google Scholar
  239. 239.
    LeQuense P, Damluji SF, Berlin M. Electrophysiological studies of peripheral nerves in patients with organic mercury poisoning. J Neurol Neurosurg Psychiatry. 1974;37:333–9.CrossRefGoogle Scholar
  240. 240.
    Rustam H, von Burg R, Amin-Saki L, Elhassani S. Evidence of a neuromuscular disorder in methylmercury poisoning. Arch Environ Health. 1975;30:190–5.PubMedCrossRefGoogle Scholar
  241. 241.
    Atchinson WD, Narahashi T. Methylmercury induced depression of neuromuscular transmission in the rat. Neurotoxicology. 1982;3:37–50.Google Scholar
  242. 242.
    Rehman K, Fatima F, Waheed I, Akash MSH. Prevalence of exposure of heavy metals and their impact on health consequences. J Cell Biochem. 2017;119(1):157–84.PubMedCrossRefGoogle Scholar
  243. 243.
    Proudfoot A. The early toxicology of physostigmine: a tale of beans, great men and egos. Toxicol Rev. 2006;25:99–138.PubMedCrossRefGoogle Scholar
  244. 244.
    Taylor P. Anticholinesterase agents. In: Gilman AG, Goodman LS, Rall TW, Murad F, editors. The pharmacological basis of therapeutics. 7th ed. New York: MacMillan; 1985. p. 110–29.Google Scholar
  245. 245.
    Edmundson RS. Dictionary of organophosphorus compounds [electronic resource]. London: Chapman and Hall; 1988.Google Scholar
  246. 246.
    Gunderson CH, Lehmann CR, Sidell FR, Jabari B. Nerve effects: a review. Neurology. 1992;42:946–50.PubMedCrossRefGoogle Scholar
  247. 247.
    Pedersen B, Ssemugabo C, Nabankema V, Jors E. Characteristics of pesticide poisoning in rural and urban settings in Uganda. Environ Health Insights. 2017;11:1178630217713015.PubMedPubMedCentralCrossRefGoogle Scholar
  248. 248.
    Alinejad S, Zamani N, Abdollahi M, Mehrpour OA. Narrative review of acute adult poisoning in Iran. Iran J Med Sci. 2017;42:327–46.PubMedPubMedCentralGoogle Scholar
  249. 249.
    Fernando R. Pesticides in Sri Lanka. Friedrich-Ebert-Stiftung: Colombo; 1989.Google Scholar
  250. 250.
    Adinew GM, Asrie AB, Birru EM. Pattern of acute organophosphorus poisoning at University of Gondar Teaching Hospital, Northwest Ethiopia. BMC Res Notes. 2017;10:149.PubMedPubMedCentralCrossRefGoogle Scholar
  251. 251.
    Aldridge WN, Reiner E. Enzyme inhibitors as substrates. Amsterdam: North-Holland Publishing Co.; 1972.Google Scholar
  252. 252.
    Marrs TC. Organophosphate poisoning. Pharmacol Ther. 1993;58:51–66.PubMedCrossRefGoogle Scholar
  253. 253.
    Namba T, Nolte CT, Jackrel J, Grob D. Poisoning due to organophosphorous insecticides. Am J Med. 2001;50:475–92.CrossRefGoogle Scholar
  254. 254.
    De Wilde V, Vogblaers D, Colarddyn F, et al. Postsynaptic neuromuscular dysfunction in orgaophosphate induced intermediate syndrome. Klin Wochenschr. 1991;69:177–83.PubMedCrossRefGoogle Scholar
  255. 255.
    Good JL, Khurana RK, Mayer RF, Cintra WM, Albuquerque EX. Pathophysiological studies of neuromuscular function in subacute organophosphate poisoning induced by phosmet. J Neurol Neurosurg Psychiatry. 1993;56:290–4.PubMedPubMedCentralCrossRefGoogle Scholar
  256. 256.
    Gutmann L, Besser R. Organophosphate intoxication: pharmacologic, neurophysiologic, clinical, and therapeutic considerations. Semin Neurol. 1990;10:46–51.PubMedCrossRefGoogle Scholar
  257. 257.
    Maselli RA, Soliven BC. Analysis of the organophosphate-induced electromyographic response to repetitive nerve stimulation: paradoxical response to edrophonium and D-tubocurarine. Muscle Nerve. 1991;14:1182–8.PubMedCrossRefGoogle Scholar
  258. 258.
    Vale A, Lotti M. Organophosphorus and carbamate insecticide poisoning. Handb Clin Neurol. 2015;131:149–68.PubMedCrossRefGoogle Scholar
  259. 259.
    Tsao TC, Juang Y, Lan R, Shieh W, Lee C. Respiratory failure of acute organophosphate and carbamate poisoning. Chest. 1990;98:631–6.PubMedCrossRefGoogle Scholar
  260. 260.
    WHO/UNEP. Public health impact of pesticides used in agriculture. Geneva: World Heath Organization; 1990. p. 1–128.Google Scholar
  261. 261.
    Besser R, Gutmann L, Dilimann U, Weilemann LS, Hopf HC. End plate dysfunction in acute organophosphate intoxication. Neurology. 1989;39:561–7.PubMedCrossRefGoogle Scholar
  262. 262.
    Jeyaratnam J. Acute pesticide poisoning: a major health problem. World Health Stat Q. 1990;43:139–45.PubMedGoogle Scholar
  263. 263.
    Haddad LM. Organophosphate poisoning—intermediate syndrome. J Toxicol Clin Toxicol. 1992;30:331–2.CrossRefGoogle Scholar
  264. 264.
    De Bleecker J, Willems J, Van Den Neucker K, De Reuck J, Vogelaers D. Prolonged toxicity with intermediate syndrome after combined parathion and methyl parathion poisoning. Clin Toxicol. 1992;30:333–45.Google Scholar
  265. 265.
    Güler K, Tascioglu C, Özbey N. Organophosphate poisoning. Isr J Med Sci. 1996;32:791–2.PubMedGoogle Scholar
  266. 266.
    Chaudhry R, Lall SB, Mishra B, Dhawan B. Lesson of the week—a foodborne outbreak of organophosphate poisoning. Br Med J. 1998;317:268–9.CrossRefGoogle Scholar
  267. 267.
    Cranmer MF. Carbaryl. A toxicological review and risk analysis. Neurotoxicology. 1986;7:247–328.PubMedGoogle Scholar
  268. 268.
    Goldman LR, Smith DF, Neutra RR, Saunders LD, Pond EM, Stratton J, et al. Pesticide food poisoning from contaminated watermelons in California. Arch Environ Health. 1990;45:229–36.PubMedCrossRefGoogle Scholar
  269. 269.
    Freslew KE, Hagardorn AN, McCormick WF. Poisoning from oral ingestion of carbofuran (Furadan 4F), a cholinesterase-inhibiting carbamate insecticide, and its effects on cholinesterase activity in various biological fluids. J Forensic Sci. 1992;37:337–44.Google Scholar
  270. 270.
    Jenis EH, Payne RJ, Goldbaum LR. Acute meprobamate poisoning: a fatal case following a lucid interval. JAMA. 1969;207:361–2.PubMedCrossRefGoogle Scholar
  271. 271.
    Klys M, Kosún J, Pach J, Kamenczak A. Carbofuran poisoning of pregnant women and fetus per ingestion. J Forensic Sci. 1989;34:1413–6.PubMedCrossRefGoogle Scholar
  272. 272.
    Maddock RK, Bloomer HA. Meprobamate overdosage. Evaluation of its severity and methods of treatment. JAMA. 1967;201:123–7.CrossRefGoogle Scholar
  273. 273.
    Ecobichon DJ. Carbamates. In: Spencer PS, Schaumburg HH, editors. Experimental and clinical neurotoxicology. 2nd ed. New York: Oxford University Press; 2000. p. 289–98.Google Scholar
  274. 274.
    Maynard RL. Toxicology of chemical warfare agents. In: Ballantyne B, Marrs T, Turner T, editors. General and applied toxicology. New York: Stockton Press; 1993. p. 1253.Google Scholar
  275. 275.
    Spencer PS, Wilson BW, Albuquerque EX. Sarin, other “nerve agents” and their antidotes. In: Spencer PS, Schaumburg HH, editors. Experimental and clinical neurotoxicology. 2nd ed. New York: Oxford University Press; 2000. p. 1073–93.Google Scholar
  276. 276.
    Meselson M, Perry Robinson J. Chemical warfare and disarmament. Sci Am. 1980;242:38–47.CrossRefGoogle Scholar
  277. 277.
    Nozaki H, Aikawa N, Fujishima S, Suzuki M, Shinozawa Y, Hori S, et al. A case of VX poisoning and the difference from Sarin. Lancet. 1995;346:698–9.PubMedCrossRefGoogle Scholar
  278. 278.
    Nozaki H, Aikawa N, Shinozawa Y, Hori S, Fujishima S, Takuma K, et al. Sarin poisoning in Tokyo subway. Lancet. 1995;345:980–1.PubMedCrossRefGoogle Scholar
  279. 279.
    Morita H, Yanagisawa N, Nakajima T, Shimizu M, Hirabayashi H, Okudera H, et al. Sarin poisoning in Matsumoto, Japan. Lancet. 1995;346:290–3.PubMedCrossRefGoogle Scholar
  280. 280.
    Nakajima T, Saro S, Morita H, Yanagisawa N. Sarin poisoning of a rescue team in the Matsumoto sarin incident in Japan. Occup Environ Med. 1997;54:697–701.PubMedPubMedCentralCrossRefGoogle Scholar
  281. 281.
    Woodall J. Tokyo subway gas attack. Lancet. 1997;350:296.PubMedCrossRefGoogle Scholar
  282. 282.
    Dunn MA, Hackley BE, Sidell FR. Pretreatment for nerve agent exposure. In: Sidell FR, Talafuji ET, Franz DR, editors. Textbook of military medicine: medical aspects of chemical and biological warfare. Washington, DC: Borden Institute, Walter Reed Army Medical Center; 1997. p. 181–96.Google Scholar
  283. 283.
    Dawson RM. Review of oximes available for treatment of nerve agent poisoning. J Appl Toxicol. 1994;14:317–31.PubMedCrossRefGoogle Scholar
  284. 284.
    Worek F, Thiermann H, Wille T. Oximes in organophosphate poisoning: 60 years of hope and despair. Chem Biol Interact. 2016;259:93–8.PubMedCrossRefGoogle Scholar
  285. 285.
    Holstege CP, Kirk M, Sidell FR. Chemical warfare. Nerve agent poisoning. Crit Care Clin. 1997;13:923–42.PubMedCrossRefGoogle Scholar
  286. 286.
    King AM, Aaron CK. Organophosphate and carbamate poisoning. Emerg Med Clin North Am. 2015;33:133–51.PubMedCrossRefGoogle Scholar
  287. 287.
    Becker G, Kawan A, Szinicz L. Direct reaction of oximes with sarin, soman or tabun in vitro. Arch Toxicol. 1997;71:714–8.PubMedCrossRefGoogle Scholar
  288. 288.
    Ecobichon DJ. Carbamic acid ester insecticides. In: Ecobichon DJ, Joy RM, editors. Pesticides and neurological disease. 2nd ed. Boca Raton: CRC Press; 1994. p. 251–89.Google Scholar
  289. 289.
    Rotenberg M, Shefi M, Dany S, Dore I, Tirosh M, Almog S. Differentiation between organophosphate and carbamate poisoning. Clin Chim Acta. 1995;234:11–21.PubMedCrossRefGoogle Scholar
  290. 290.
    Besser R, Vogt T, Gutmann L. High pancuronium sensitivity of axonal nicotinic-acetylcholine receptors in humans during organophosphate intoxication. Muscle Nerve. 1991;14:1197–201.PubMedCrossRefGoogle Scholar
  291. 291.
    Miller SA, Blick DW, Kerenyi SZ, Murphy MR. Efficacy of physostigmine as a pretreatment for organophosphate poisoning. Pharmacol Biochem Behav. 1993;44:343–7.PubMedCrossRefGoogle Scholar
  292. 292.
    De Cauwer H, Somville FJ, Joillet M. Neurological aspects of chemical and biological terrorism: guidelines for neurologists. Acta Neurol Belg. 2017;117:603–11.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of NeurologyThe University of North CarolinaChapel HillUSA

Personalised recommendations