Skip to main content

Congenital Myasthenic Syndromes

  • Chapter
  • First Online:
  • 2077 Accesses

Part of the book series: Current Clinical Neurology ((CCNEU))

Abstract

The congenital myasthenic syndromes (CMS) are rare hereditary disorders of neuromuscular transmission. They are characterized by fatiguable fluctuating muscle weakness that can vary in severity. Diagnosis is important since these are treatable conditions, and appropriate medication and interventions may avert life-threatening respiratory crises that occur in some syndromes. The advent of next-generation sequencing has facilitated the discovery of many genes that harbor CMS-associated mutations. Up to 30 different genes may be involved. These may encode proteins directly involved in signal transmission or in controlling the formation and maintenance of the neuromuscular synapse, and the severity of the disorders can vary from fatality in utero or the neonatal period to near-asymptomatic weakness. Recent findings show that many genes whose functions are not restricted to the neuromuscular junction can also cause myasthenic weakness, such as genes involved in protein glycosylation pathways or neurotransmitter release. In some of the more recently identified syndromes, the myasthenic weakness is only one component of a more complex phenotypic spectrum, which introduces additional challenges in patient treatment.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Engel AG, Shen XM, Selcen D, Sine SM. Congenital myasthenic syndromes: pathogenesis, diagnosis, and treatment. Lancet Neurol. 2015;14:420–34.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Beeson D. Congenital myasthenic syndromes: recent advances. Curr Opin Neurol. 2016;29:565–71.

    Article  CAS  PubMed  Google Scholar 

  3. Parr JR, Andrew MJ, Finnis M, Beeson D, Vincent A, Jayawant S. How common is childhood myasthenia? The UK incidence and prevalence of autoimmune and congenital myasthenia. Arch Dis Child. 2014;99:539–42.

    Article  PubMed  Google Scholar 

  4. Senderek J, Müller JS, Dusl M, Strom TM, Guergueltcheva V, Diepolder I, et al. Hexosamine biosynthetic pathway mutations cause neuromuscular transmission defect. Am J Hum Genet. 2011;88:162–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Belaya K, Finlayson S, Slater C, Cossins J, Liu WW, Maxwell S, et al. Mutations in DPAGT1 cause a limb-girdle congenital myasthenic syndrome with tubular aggregates. Am J Hum Genet. 2012;91:193–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cossins J, Belaya K, Hicks D, Salih MA, Finlayson S, Carboni N, et al. Congenital myasthenic syndromes due to mutations in ALG2 and ALG14. Brain. 2013;136:944–56.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Belaya K, Rodríguez Cruz PM, Liu WW, Maxwell S, McGowan S, Farrugia ME, et al. Mutations in GMPPB cause congenital myasthenic syndrome and bridge myasthenic disorders with dystroglycanopathies. Brain. 2015;138:2493–504.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Shen XM, Selcen D, Brengman J, Engel AG. Mutant SNAP25B causes myasthenia, cortical hyperexcitability, ataxia, and intellectual disability. Neurology. 2014;83:2247–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bauché S, O’Regan S, Azuma Y, Laffargue F, McMacken G, Sternberg D, et al. Impaired presynaptic high-affinity choline transporter causes a congenital myasthenic syndrome with episodic apnea. Am J Hum Genet. 2016;99:753–61.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. O’Grady GL, Verschuuren J, Yuen M, Webster R, Menezes M, Fock JM, et al. Variants in SLC18A3, vesicular acetylcholine transporter, cause congenital myasthenic syndrome. Neurology. 2016;87:1442–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Engel AG, Selcen D, Shen XM, Milone M, Harper CM. Loss of MUNC13-1 function causes microcephaly, cortical hyperexcitability, and fatal myasthenia. Neurol Genet. 2016;2:e105.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Shen XM, Scola RH, Lorenzoni PJ, Kay CS, Werneck LC, Brengman J, et al. Novel synaptobrevin-1 mutation causes fatal congenital myasthenic syndrome. Ann Clin Transl Neurol. 2017;4:130–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Engel AG, Ohno K, Sine SM. Sleuthing molecular targets for neurological diseases at the neuromuscular junction. Nat Rev Neurosci. 2003;4:339–52.

    Article  CAS  PubMed  Google Scholar 

  14. Ohno K, Tsujino A, Brengman JM, Harper CM, Bajzer Z, Udd B, et al. Choline acetyltransferase mutations cause myasthenic syndrome associated with episodic apnea in humans. Proc Natl Acad Sci U S A. 2001;98:2017–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Maselli RA, Chen D, Mo D, Bowe C, Fenton G, Wollmann RL. Choline acetyltransferase mutations in myasthenic syndrome due to deficient acetylcholine resynthesis. Muscle Nerve. 2003;27:180–7.

    Article  CAS  PubMed  Google Scholar 

  16. Milone M, Fukuda T, Shen XM, Tsujino A, Brengman J, Engel AG. Novel congenital myasthenic syndromes associated with defects in quantal release. Neurology. 2006;66:1223–9.

    Article  CAS  PubMed  Google Scholar 

  17. Donger C, Krejci E, Serradell AP, Eymard B, Bon S, Nicole S, et al. Mutation in the human acetylcholinesterase-associated collagen gene, COLQ, is responsible for congenital myasthenic syndrome with endplate acetylcholinesterase deficiency (type 1c). Am J Hum Genet. 1998;63:967–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ohno K, Brengman J, Tsujino A, Engel AG. Human endplate acetylcholinesterase deficiency caused by mutations in the collagen-like tail subunit (ColQ) of the asymmetric enzyme. Proc Natl Acad Sci U S A. 1998;95:9654–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sine SM, Ohno K, Bouzat C, Auerbach A, Milone M, Pruitt JN, et al. Mutation of the acetylcholine receptor alpha subunit causes a slow-channel myasthenic syndrome by enhancing agonist binding affinity. Neuron. 1995;15:229–39.

    Article  CAS  PubMed  Google Scholar 

  20. Ohno K, Wang HL, Milone M, Bren N, Brengman JM, Nakano S, et al. Congenital myasthenic syndrome caused by decreased agonist binding affinity due to a mutation in the acetylcholine receptor epsilon subunit. Neuron. 1996;17:157–70.

    Article  CAS  PubMed  Google Scholar 

  21. Engel AG, Ohno K, Bouzat C, Sine SM, Griggs RC. End-plate acetylcholine receptor deficiency due to nonsense mutations in the epsilon subunit. Ann Neurol. 1996;40:810–7.

    Article  CAS  PubMed  Google Scholar 

  22. Ohno K, Quiram PA, Milone M, Wang HL, Harper MC, Pruitt JN 2nd, et al. Congenital myasthenic syndromes due to heteroallelic nonsense/missense mutations in the acetylcholine receptor epsilon subunit gene: identification and functional characterization of six new mutations. Hum Mol Genet. 1997;6:753–66.

    Article  CAS  PubMed  Google Scholar 

  23. Chevessier F, Faraut B, Ravel-Chapuis A, Richard P, Gaudon K, Bauché S, et al. MuSK, a new target for mutations causing congenital myasthenic syndrome. Hum Mol Genet. 2004;13:3229–40.

    Article  CAS  PubMed  Google Scholar 

  24. Maselli RA, Arredondo J, Cagney O, Ng JJ, Anderson JA, Williams C, et al. Mutations in MUSK causing congenital myasthenic syndrome impair MuSK-Dok-7 interaction. Hum Molec Genet. 2010;19:2370–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Huze C, Bauche S, Richard P, Chevessier F, Goillot E, Gaudon K, et al. Identification of an agrin mutation that causes congenital myasthenia and affects synapse function. Am J Hum Genet. 2009;85:155–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Nicole S, Chaouch A, Torbergsen T, Bauché S, de Bruyckere E, Fontenille MJ, et al. Agrin mutations lead to a congenital myasthenic syndrome with distal muscle weakness and atrophy. Brain. 2014;137:2429–43.

    Article  PubMed  Google Scholar 

  27. Selcen D, Ohkawara B, Shen XM, McEvoy K, Ohno K, Engel AG. Impaired synaptic development, maintenance, and neuromuscular transmission in LRP4-related myasthenia. JAMA Neurol. 2015;72:889–96.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Tsujino A, Maertens C, Ohno K, Shen XM, Fukuda T, Harper CM, et al. Myasthenic syndrome caused by mutation of the SCN4A sodium channel. Proc Natl Acad Sci U S A. 2003;100:7377–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ohno K, Engel AG, Shen XM, Selcen D, Brengman J, Harper CM, et al. Rapsyn mutations in humans cause endplate acetylcholine-receptor deficiency and myasthenic syndrome. Am J Hum Genet. 2002;70:875–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Beeson D, Higuchi O, Palace J, Cossins J, Spearman H, Maxwell S, et al. Dok-7 mutations underlie a neuromuscular junction synaptopathy. Science. 2006;313:1975–8.

    Article  CAS  PubMed  Google Scholar 

  31. Burke G, Cossins J, Maxwell S, Owens G, Vincent A, Robb S, et al. Rapsyn mutations in hereditary myasthenia; distinct early- and late-onset phenotypes. Neurology. 2003;61:826–8.

    Article  CAS  PubMed  Google Scholar 

  32. Burke G, Cossins J, Maxwell S, Robb S, Nicolle M, Vincent A, et al. Distinct phenotypes of congenital acetylcholine receptor deficiency. Neuromuscul Disord. 2004;14:356–64.

    Article  CAS  PubMed  Google Scholar 

  33. Wargon I, Richard P, Kuntzer T, Sternberg D, Nafissi S, Gaudon K, et al. Long-term follow-up of patients with congenital myasthenic syndrome caused by COLQ mutations. Neuromuscul Disord. 2012;22:318–24.

    Article  CAS  PubMed  Google Scholar 

  34. Palace J, Lashley D, Newsom-Davis J, Cossins J, Maxwell S, Kennett R, et al. Clinical features of the DOK7 neuromuscular junction synaptopathy. Brain. 2007;130:1507–15.

    Article  PubMed  Google Scholar 

  35. Barisic N, Muller JS, Paucic-Kirincic E, Gazdik M, Lah-Tomulic K, Pertl A, et al. Clinical variability of CMS-EA (congenital myasthenic syndrome with episodic apnea) due to identical CHAT mutations in two infants. Eur J Paediatr Neurol. 2005;9:7–12.

    Article  CAS  PubMed  Google Scholar 

  36. Shen XM, TO C, Brengman J, Acsadi G, Iannaconne S, Karaca E, et al. Functional consequences and structural interpretation of mutations of human choline acetyltransferase. Hum Mutat. 2011;32:1259–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Herrmann DN, Horvath R, Sowden JE, Gonzalez M, Sanchez-Mejias A, Guan Z, et al. Synaptotagmin 2 mutations cause an autosomal-dominant form of lambert-eaton myasthenic syndrome and nonprogressive motor neuropathy. Am J Hum Genet. 2014;95:332–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bestue-Cardiel M, Saenz de Cabezon-Alvarez A, López-Pisón J, Peña-Segura JL, Martin-Martinez J, et al. Congenital endplate acetylcholinesterase deficiency responsive to ephedrine. Neurology. 2005;65:144–6.

    Article  CAS  PubMed  Google Scholar 

  39. Padmanabha H, Saini AG, Sankhyan N, Singhi P. COLQ-related congenital myasthenic syndrome and response to salbutamol therapy. J Clin Neuromuscul Dis. 2017;18:162–3.

    Article  PubMed  Google Scholar 

  40. Ohno K, Engel AG, Brengman JM, Shen XM, Heidenreich F, Vincent A, et al. The spectrum of mutations causing end-plate acetylcholinesterase deficiency. Ann Neurol. 2000;47:162–70.

    Article  CAS  PubMed  Google Scholar 

  41. Kimbell LM, Ohno K, Engel AG, Rotundo RL. C-terminal and heparin-binding domains of collagenic tail subunit are both essential for anchoring acetylcholinesterase at the synapse. J Biol Chem. 2004;279:10997–1005.

    Article  CAS  PubMed  Google Scholar 

  42. Logan CV, Cossins J, Rodríguez Cruz P, Parry DA, Maxwell S, Martínez-Martínez P, et al. Congenital myasthenic syndrome type 19 is caused by mutations in COL13A1, encoding the atypical non-fibrillar collagen type XIII α1 chain. Am J Hum Genet. 2015;97:878–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hägg P, Rehn M, Huhtala P, Väisänen T, Tamminen M, Pihlajaniemi T. Type XIII collagen is identified as a plasma membrane protein. J Biol Chem. 1998;273:15590–7.

    Article  PubMed  Google Scholar 

  44. Latvanlehto A, Fox M, Sormunen R, Tu H, Oikarainen T, Koski A, et al. Muscle-derived collagen XIII regulates maturation of the skeletal neuromuscular junction. J Neurosci. 2010;30:12230–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Härönen H, Zainul Z, Tu H, Naumenko N, Sormunen R, Miinalainen I, et al. Collagen XIII secures pre- and postsynaptic integrity of the neuromuscular synapse. Hum Mol Genet. 2017;26:2076–90.

    Article  PubMed  CAS  Google Scholar 

  46. Maselli RA, Ng JJ, Anderson JA, Cagney O, Arredondo J, Williams C, et al. Mutations in LAMB2 causing a severe form of synaptic congenital myasthenic syndrome. J Med Genet. 2009;46:203–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Maselli RA, Arredondo J, Vázquez J, Chong JX, University of Washington Center for Mendelian Genomics, Bamshad MJ, et al. Presynaptic congenital myasthenic syndrome with a homozygous sequence variant in LAMA5 combines myopia, facial tics, and failure of neuromuscular transmission. Am J Med Genet A. 2017;173:2240–5.

    Article  CAS  PubMed  Google Scholar 

  48. Ohno K, Hutchinson DO, Milone M, Brengman JM, Bouzat C, Sine SM, et al. Congenital myasthenic syndrome caused by prolonged acetylcholine receptor channel openings due to a mutation in the M2 domain of the epsilon subunit. Proc Natl Acad Sci U S A. 1995;92:758–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Webster R, Maxwell S, Spearman H, Tai K, Beckstein O, Sansom M, et al. A novel congenital myasthenic syndrome due to decreased acetylcholine receptor ion-channel conductance. Brain. 2012;135:1070–80.

    Article  PubMed  Google Scholar 

  50. Croxen R, Young C, Slater C, Haslam S, Brydson M, Vincent A, et al. End-plate gamma- and epsilon-subunit mRNA levels in AChR deficiency syndrome due to epsilon-subunit null mutations. Brain. 2001;124:1362–72.

    Article  CAS  PubMed  Google Scholar 

  51. Hesselmans LF, Jennekens FG, Van den Oord CJ, Veldman H, Vincent A. Development of innervation of skeletal muscle fibers in man: relation to acetylcholine receptors. Anat Rec. 1993;236:553–62.

    Article  CAS  PubMed  Google Scholar 

  52. MacLennan C, Beeson D, Buijs AM, Vincent A, Newsom-Davis J. Acetylcholine receptor expression in human extraocular muscles and their susceptibility to myasthenia gravis. Ann Neurol. 1997;41:423–31.

    Article  CAS  PubMed  Google Scholar 

  53. Vincent A, Cull-Candy SG, Newsom-Davis J, Trautmann A, Molenaar PC, Polak RL. Congenital myasthenia: end-plate acetylcholine receptors and electrophysiology in five cases. Muscle Nerve. 1981;4:306–18.

    Article  CAS  PubMed  Google Scholar 

  54. Nichols P, Croxen R, Vincent A, Rutter R, Hutchinson M, Newsom-Davis J, et al. Mutation of the acetylcholine receptor ε-subunit promoter in congenital myasthenic syndrome. Ann Neurol. 1999;45:439–43.

    Article  CAS  PubMed  Google Scholar 

  55. Ohno K, Anlar B, Engel AG. Congenital myasthenic syndrome caused by a mutation in the Ets-binding site of the promoter region of the acetylcholine receptor epsilon subunit gene. Neuromuscul Disord. 1999;9:131–5.

    Article  CAS  PubMed  Google Scholar 

  56. Abicht A, Stucka R, Schmidt C, Briguet A, Höpfner S, Song IH, et al. A newly identified chromosomal microdeletion and an N-box mutation of the AChR epsilon gene cause a congenital myasthenic syndrome. Brain. 2002;125:1005–13.

    Article  PubMed  Google Scholar 

  57. Cossins J, Webster R, Maxwell S, Burke G, Vincent A, Beeson D. A mouse model of AChR deficiency syndrome with a phenotype reflecting the human condition. Hum Mol Genet. 2004;13:2947–57.

    Article  CAS  PubMed  Google Scholar 

  58. Ealing J, Webster R, Brownlow S, Abdelgany A, Oosterhuis H, Muntoni F, et al. Mutations in congenital myasthenic syndromes reveal an ε-subunit C-terminal cysteine, C470, crucial for maturation and surface expression of adult AChR. Hum Mol Genet. 2002;11:3087–96.

    Article  CAS  PubMed  Google Scholar 

  59. Croxen R, Newland C, Betty M, Vincent A, Newsom-Davis J, Beeson D. Novel functional epsilon-subunit polypeptide generated by a single nucleotide deletion in acetylcholine receptor deficiency congenital myasthenic syndrome. Ann Neurol. 1999;46:639–47.

    Article  CAS  PubMed  Google Scholar 

  60. Abicht A, Stucka R, Karcagi V, Herczegfalvi A, Horváth R, Mortier W, et al. A common mutation (epsilon1267delG) in congenital myasthenic patients of gypsy ethnic origin. Neurology. 1999;53:1564–9.

    Article  CAS  PubMed  Google Scholar 

  61. Morar B, Gresham D, Angelicheva D, Tournev I, Gooding R, Guergueltcheva V, et al. Mutation history of the Roma gypsies. Am J Hum Genet. 2004;75:596–609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Quiram PA, Ohno K, Milone M, Patterson MC, Pruitt NJ, Brengman JM, et al. Mutation causing congenital myasthenia reveals acetylcholine receptor beta/delta subunit interaction essential for assembly. J Clin Invest. 1999;104:1403–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Engel AG, Lambert EH, Mulder DM, Torres CF, Sahashi K, Bertorini TE, et al. A newly recognized congenital myasthenic syndrome attributed to a prolonged open time of the acetylcholine-induced ion channel. Ann Neurol. 1982;11:553–69.

    Article  CAS  PubMed  Google Scholar 

  64. Croxen R, Hatton C, Shelley C, Brydson M, Chauplannaz G, Oosterhuis H, et al. Recessive inheritance and variable penetrance of slow-channel congenital myasthenic syndromes. Neurology. 2002;59:162–8.

    Article  CAS  PubMed  Google Scholar 

  65. Gomez CM, Maselli R, Gammack J, Lasalde J, Tamamizu S, Cornblath DR, et al. A beta-subunit mutation in the acetylcholine receptor channel gate causes severe slow-channel syndrome. Ann Neurol. 1996;39:712–23.

    Article  CAS  PubMed  Google Scholar 

  66. Gomez CM, Maselli RA, Vohra BP, Navedo M, Stiles JR, Charnet P, et al. Novel delta subunit mutation in slow-channel syndrome causes severe weakness by novel mechanisms. Ann Neurol. 2002;51:102–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hatton CJ, Shelley C, Brydson M, Beeson D, Colquhoun D. Properties of the human muscle nicotinic receptor, and of the slow-channel myasthenic syndrome mutant epsilonL221F, inferred from maximum likelihood fits. J Physiol. 2003;547:729–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Croxen R, Newland C, Beeson D, Oosterhuis H, Chauplannaz G, Vincent A, et al. Mutations in different functional domains of the human muscle acetylcholine receptor alpha subunit in patients with the slow-channel congenital myasthenic syndrome. Hum Mol Genet. 1997;6:767–74.

    Article  CAS  PubMed  Google Scholar 

  69. Engel AG, Ohno K, Milone M, Wang HL, Nakano S, Bouzat C, et al. New mutations in acetylcholine receptor subunit genes reveal heterogeneity in the slow channel congenital myasthenic syndrome. Hum Mol Genet. 1996;5:1217–27.

    Article  CAS  PubMed  Google Scholar 

  70. Finlayson S, Spillane J, Kullmann DM, Howard R, Webster R, Palace J, et al. Slow channel congenital myasthenic syndrome responsive to a combination of fluoxetine and salbutamol. Muscle Nerve. 2013;47:279–82.

    Article  CAS  PubMed  Google Scholar 

  71. Harper CM, Engel AG. Quinidine sulfate therapy for the slow-channel congenital myasthenic syndrome. Ann Neurol. 1998;43:480–4.

    Article  CAS  PubMed  Google Scholar 

  72. Harper CM, Fukodome T, Engel AG. Treatment of slow-channel congenital myasthenic syndrome with fluoxetine. Neurology. 2003;60:1710–3.

    Article  CAS  PubMed  Google Scholar 

  73. Colomer J, Muller JS, Vernet A, Nascimento A, Pons M, Gonzalez V, et al. Long-term improvement of slow-channel congenital myasthenic syndrome with fluoxetine. Neuromuscul Disord. 2006;16:329–33.

    Article  CAS  PubMed  Google Scholar 

  74. Webster R, Brydson M, Croxen R, Newsom-Davis J, Vincent A, Beeson D. Mutation in the AChR ion channel gate underlies a fast channel congenital myasthenic syndrome. Neurology. 2004;62:1090–6.

    Article  CAS  PubMed  Google Scholar 

  75. Palace J, Lashley D, Bailey S, Jayawant S, Carr A, McConville J, et al. Clinical features in a series of fast channel congenital myasthenia syndrome. Neuromuscul Disord. 2012;22:112–7.

    Article  PubMed  Google Scholar 

  76. Brownlow S, Webster R, Croxen R, Brydson M, Neville B, Lin JP, et al. Acetylcholine receptor delta subunit mutations underlie a fast-channel myasthenic syndrome and arthrogryposis multiplex congenita. J Clin Invest. 2001;108:125–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Wang HL, Milone M, Ohno K, Shen XM, Tsujino A, Batocchi AP, et al. Acetylcholine receptor M3 domain: stereochemical and volume contributions to channel gating. Nat Neurosci. 1999;2:226–33.

    Article  CAS  PubMed  Google Scholar 

  78. Sanes JR, Lichtman JW. Induction, assembly, maturation and maintenance of a postsynaptic apparatus. Nat Rev Neurosci. 2001;2:791–805.

    Article  CAS  PubMed  Google Scholar 

  79. Muller JS, Mildner G, Muller-Felber W, Schara U, Krampfl K, Petersen B, et al. Rapsyn N88K is a frequent cause of congenital myasthenic syndromes in European patients. Neurology. 2003;60:1805–10.

    Article  CAS  PubMed  Google Scholar 

  80. Dunne V, Maselli RA. Identification of pathogenic mutations in the human rapsyn gene. J Hum Genet. 2003;48:204–7.

    Article  CAS  PubMed  Google Scholar 

  81. Maselli RA, Dunne V, Pascual-Pascual SI. Rapsyn mutations in myasthenic syndrome due to impaired receptor clustering. Muscle Nerve. 2003;28:293–301.

    Article  CAS  PubMed  Google Scholar 

  82. Muller JS, Abicht A, Burke G, Cossins J, Richard P, Baumeister SK, et al. The congenital myasthenic syndrome mutation RAPSN N88K derives from an ancient indo-European founder. J Med Genet. 2004;41:e104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Cossins J, Burke G, Maxwell S, Spearman H, Man S, Kuks J, et al. Diverse molecular mechanisms involved in AChR deficiency due to rapsyn mutations. Brain. 2006;129:2773–83.

    Article  PubMed  Google Scholar 

  84. Ohno K, Sadeh M, Blatt I, Brengman JM, Engel AG. E-box mutations in the RAPSN promoter region in eight cases with congenital myasthenic syndrome. Hum Mol Genet. 2003;12:739–48.

    Article  CAS  PubMed  Google Scholar 

  85. Muller JS, Baumeister SK, Schara U, Cossins J, Krause S, von der Hagen M, et al. CHRND mutation causes a congenital myasthenic syndrome by impairing co-clustering of the acetylcholine receptor with rapsyn. Brain. 2006;129:2784–93.

    Article  PubMed  Google Scholar 

  86. McQuillen MP. Familial limb-girdle myasthenia. Brain. 1966;89:121–32.

    Article  CAS  PubMed  Google Scholar 

  87. Muller JS, Herczegfalvi A, Vilchez JJ, Colomer J, Bachinski LL, Mihaylova V, et al. Phenotypical spectrum of DOK7 mutations in congenital myasthenic syndromes. Brain. 2007;130:1497–506.

    Article  PubMed  Google Scholar 

  88. Lashley D, Palace J, Jayawant S, Robb S, Beeson D. Ephedrine treatment in congenital myasthenic syndrome due to mutations in DOK7. Neurology. 2010;74:1517–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Missias AC, Mudd J, Cunningham JM, Steinbach JH, Merlie JP, Sanes JR. Deficient development and maintenance of postsynaptic specializations in mutant mice lacking an ‘adult’ acetylcholine receptor subunit. Development. 1997;124:5075–86.

    CAS  PubMed  Google Scholar 

  90. Gautam M, Noakes PG, Mudd J, Nichol M, Chu GC, Sanes JR, et al. Failure of postsynaptic specialization to develop at neuromuscular junctions of rapsyn-deficient mice. Nature. 1995;377:232–6.

    Article  CAS  PubMed  Google Scholar 

  91. Gautam M, Noakes PG, Moscoso L, Rupp F, Scheller RH, Merlie JP, et al. Defective neuromuscular synaptogenesis in agrin-deficient mutant mice. Cell. 1996;85:525–35.

    Article  CAS  PubMed  Google Scholar 

  92. DeChiara TM, Bowen DC, Valenzuela DM, Simmons MV, Poueymirou WT, Thomas S, et al. The receptor tyrosine kinase MuSK is required for neuromuscular junction formation in vivo. Cell. 1996;85:501–12.

    Article  CAS  PubMed  Google Scholar 

  93. Willmann R, Fuhrer C. Neuromuscular synaptogenesis: clustering of acetylcholine receptors revisited. Cell Mol Life Sci. 2002;59:1296–316.

    Article  CAS  PubMed  Google Scholar 

  94. Okada K, Inoue A, Okada A, Murata Y, Kakuta S, Jigami T, et al. The muscle protein Dok-7 is essential for neuromuscular synaptogenesis. Science. 2006;312:1802–5.

    Article  CAS  PubMed  Google Scholar 

  95. Slater CR, Fawcett PR, Walls TJ, Lyons PR, Bailey SJ, Beeson D, et al. Pre- and post-synaptic abnormalities associated with impaired neuromuscular transmission in a group of patients with ‘limb-girdle’ myasthenia. Brain. 2006;129:2061–76.

    Article  CAS  PubMed  Google Scholar 

  96. Kariminejad A, Stollfuß B, Li Y, Bögershausen N, Boss K, Hennekam RC, et al. Severe Cenani-Lenz syndrome caused by loss of LRP4 function. Am J Med Genet A. 2013;161A:1475–9.

    Article  PubMed  CAS  Google Scholar 

  97. Maselli RA, Fernandez JM, Arredondo J, Navarro C, Ngo M, Beeson D, et al. LG2 agrin mutation causing severe congenital myasthenic syndrome mimics functional characteristics of non-neural (z-) agrin. Hum Genet. 2012;131:1123–35.

    Article  CAS  PubMed  Google Scholar 

  98. Ben Ammar A, Soltanzadeh P, Bauché S, Richard P, Goillot E, Herbst R, et al. A mutation causes MuSK reduced sensitivity to agrin and congenital myasthenia. PLoS One. 2013;8(1):e53826.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Mishina M, Takai T, Imoto K, Noda M, Takahashi T, Numa S, et al. Molecular distinction between fetal and adult forms of muscle acetylcholine receptor. Nature. 1986;321:406–11.

    Article  CAS  PubMed  Google Scholar 

  100. Escobar V, Bixler D, Gleiser S, Weaver DD, Gibbs T. Multiple pterygium syndrome. Am J Dis Child. 1978;132:609–11.

    CAS  PubMed  Google Scholar 

  101. Morgan NV, Brueton LA, Cox P, Greally MT, Tolmie J, Pasha S, et al. Mutations in the embryonal subunit of the acetylcholine receptor (CHRNG) cause lethal and Escobar variants of multiple pterygium syndrome. Am J Hum Genet. 2006;79:390–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Hoffmann K, Muller JS, Stricker S, Megarbane A, Rajab A, Lindner TH, et al. Escobar syndrome is a prenatal myasthenia caused by disruption of the acetylcholine receptor fetal gamma subunit. Am J Hum Genet. 2006;79:303–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Moremen K, Tiemeyer M, Nairn A. Vertebrate protein glycosylation: diversity, synthesis and function. Nat Rev Mol Cell Biol. 2012;13:448–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Jaeken J, Matthijs G. Congenital disorders of glycosylation: a rapidly expanding disease family. Annu Rev Genomics Hum Genet. 2007;8:261–78.

    Article  CAS  PubMed  Google Scholar 

  105. Gehle VM, Walcott EC, Nishizaki T, Sumikawa K. N-glycosylation at the conserved sites ensures the expression of properly folded functional ACh receptors. Brain Res Mol Brain Res. 1997;45:219–29.

    Article  CAS  PubMed  Google Scholar 

  106. Selcen D, Shen XM, Brengman J, Li Y, Stans AA, Wieben E, et al. DPAGT1 myasthenia and myopathy: genetic, phenotypic, and expression studies. Neurology. 2014;82:1822–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Würde AE, Reunert J, Rust S, Hertzberg C, Haverkämper S, Nürnberg G, et al. Congenital disorder of glycosylation type Ij (CDG-Ij, DPAGT1-CDG): extending the clinical and molecular spectrum of a rare disease. Mol Genet Metab. 2012;105:634–41.

    Article  PubMed  CAS  Google Scholar 

  108. Haltiwanger RS, Lowe JB. Role of glycosylation in development. Annu Rev Biochem. 2004;73:491–537.

    Article  CAS  PubMed  Google Scholar 

  109. Zoltowska K, Webster R, Finlayson S, Maxwell S, Cossins J, Müller J, et al. Mutations in GFPT1 that underlie limb-girdle congenital myasthenic syndrome result in reduced cell-surface expression of muscle AChR. Hum Mol Genet. 2013;22:2905–13.

    Article  CAS  PubMed  Google Scholar 

  110. Bretthauer RK. Structure, expression, and regulation of UDP-GlcNAc: dolichol phosphate GlcNAc-1-phosphate transferase (DPAGT1). Curr Drug Targets. 2009;10:477–82.

    Article  CAS  PubMed  Google Scholar 

  111. Lu J, Takahashi T, Ohoka A, Nakajima K, Hashimoto R, Miura N, et al. Alg14 organizes the formation of a multiglycosyltransferase complex involved in initiation of lipid-linked oligosaccharide biosynthesis. Glycobiology. 2012;22:504–16.

    Article  CAS  PubMed  Google Scholar 

  112. Jackson BJ, Kukuruzinska MA, Robbins P. Biosynthesis of asparagine-linked oligosaccharides in Saccharomyces cerevisiae: the alg2 mutation. Glycobiology. 1993;3:357–64.

    Article  CAS  PubMed  Google Scholar 

  113. Carss KJ, Stevens E, Foley AR, Cirak S, Riemersma M, Torelli S, et al. Mutations in GDP-mannose pyrophosphorylase B cause congenital and limb-girdle muscular dystrophies associated with hypoglycosylation of α-dystroglycan. Am J Hum Genet. 2013;93:29–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Rodríguez Cruz PM, Belaya K, Basiri K, Sedghi M, Farrugia ME, Holton JL, et al. Clinical features of the myasthenic syndrome arising from mutations in GMPPB. J Neurol Neurosurg Psychiatry. 2016;87:802–9.

    Article  PubMed  Google Scholar 

  115. Muntoni F, Torelli S, Wells DJ, Brown SC. Muscular dystrophies due to glycosylation defects: diagnosis and therapeutic strategies. Curr Opin Neurol. 2011;24:437–42.

    Article  CAS  PubMed  Google Scholar 

  116. Habbout K, Poulin H, Rivier F, Giuliano S. A recessive Nav1.4 mutation underlies congenital myasthenic syndrome with periodic paralysis. Neurology. 2016;86:161–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Martens K, Derua R, Meulemans S, Waelkens E, Jaeken J, Matthijs G, et al. PREPL: a putative novel oligopeptidase propelled into the limelight. Biol Chem. 2006;387:879–83.

    Article  CAS  PubMed  Google Scholar 

  118. Régal L, Shen XM, Selcen D, Verhille C, Meulemans S, Creemers JW, et al. PREPL deficiency with or without cystinuria causes a novel myasthenic syndrome. Neurology. 2014;82:1254–60.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Kim MH, Hersh LB. The vesicular acetylcholine transporter interacts with clathrin-associated adaptor complexes AP-1 and AP-2. J Biol Chem. 2004;279:12580–7.

    Article  CAS  PubMed  Google Scholar 

  120. Hartman MA, Finan D, Sivaramakrishnan S, Spudich JA. Principles of unconventional myosin function and targeting. Annu Rev Cell Dev Biol. 2011;27:133–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Bridgman PC. Myosin motor proteins in the cell biology of the axon and other neuronal compartments. In: Koenig E, editor. Cell biology of the axon. Berlin: Springer; 2009. p. 91–105.

    Google Scholar 

  122. O’Connor E, Töpf A, Müller JS, Cox D, Evangelista T, Colomer J, et al. Identification of mutations in the MYO9A gene in patients with congenital myasthenic syndrome. Brain. 2016;139:2143–53.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Schwab RS, Timberlake WH. Pyridostigmin (mestinon) in the treatment of myasthenia gravis. N Engl J Med. 1954;251:271–2.

    Article  CAS  PubMed  Google Scholar 

  124. Palace J, Wiles CM, Newsom-Davis J. 3,4-Diaminopyridine in the treatment of congenital (hereditary) myasthenia. J Neurol Neurosurg Psychiatry. 1991;54:1069–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Burke G, Hiscock A, Klein A, Niks EH, Main M, Manzur AY, et al. Salbutamol benefits children with congenital myasthenic syndrome due to DOK7 mutations. Neuromuscul Disord. 2013;23:170–5.

    Article  PubMed  Google Scholar 

  126. Lorenzoni PJ, Scola RH, Kay CS, Filla L, Miranda AP, Pinheiro JM, et al. Salbutamol therapy in congenital myasthenic syndrome due to DOK7 mutation. J Neurol Sci. 2013;331:155–7.

    Article  CAS  PubMed  Google Scholar 

  127. Mihaylova V, Müller JS, Vilchez JJ, Salih MA, Kabiraj MM, D’Amico A, et al. Clinical and molecular genetic findings in COLQ-mutant congenital myasthenic syndromes. Brain. 2008;131:747–59.

    Article  PubMed  Google Scholar 

  128. Liewluck T, Selcen D, Engel AG. Beneficial effects of albuterol in congenital endplate acetylcholinesterase deficiency and Dok-7 myasthenia. Muscle Nerve. 2011;44:789–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Finlayson S, Palace J, Belaya K, Walls TJ, Norwood F, Burke G, et al. Clinical features of congenital myasthenic syndrome due to mutations in DPAGT1. J Neurol Neurosurg Psychiatry. 2013;84:1119–25.

    Article  PubMed  Google Scholar 

  130. Rodríguez Cruz PM, Palace J, Ramjattan H, Jayawant S, Robb SA, Beeson D. Salbutamol and ephedrine in the treatment of severe AChR deficiency syndromes. Neurology. 2015;85:1043–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Beeson PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Beeson, D. (2018). Congenital Myasthenic Syndromes. In: Kaminski, H., Kusner, L. (eds) Myasthenia Gravis and Related Disorders. Current Clinical Neurology. Humana Press, Cham. https://doi.org/10.1007/978-3-319-73585-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-73585-6_16

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-73584-9

  • Online ISBN: 978-3-319-73585-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics