Word Embedding-Based Approaches for Measuring Semantic Similarity of Arabic-English Sentences

  • El Moatez Billah Nagoudi
  • Jérémy Ferrero
  • Didier Schwab
  • Hadda Cherroun
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 782)


Semantic Textual Similarity (STS) is an important component in many Natural Language Processing (NLP) applications, and plays an important role in diverse areas such as information retrieval, machine translation, information extraction and plagiarism detection. In this paper we propose two word embedding-based approaches devoted to measuring the semantic similarity between Arabic-English cross-language sentences. The main idea is to exploit Machine Translation (MT) and an improved word embedding representations in order to capture the syntactic and semantic properties of words. MT is used to translate English sentences into Arabic language in order to apply a classical monolingual comparison. Afterwards, two word embedding-based methods are developed to rate the semantic similarity. Additionally, Words Alignment (WA), Inverse Document Frequency (IDF) and Part-of-Speech (POS) weighting are applied on the examined sentences to support the identification of words that are most descriptive in each sentence. The performances of our approaches are evaluated on a cross-language dataset containing more than 2400 Arabic-English pairs of sentence. Moreover, the proposed methods are confirmed through the Pearson correlation between our similarity scores and human ratings.


Semantic sentences similarity Cross-language Arabic-English Machine translation Word embedding 


  1. 1.
    Agirre, E., Banea, C., Cer, D., Diab, M., Gonzalez-Agirre, A., Mihalcea, R., Rigau, G., Wiebe, J.: Semeval-2016 task 1: semantic textual similarity, monolingual and cross-lingual evaluation. In: Proceedings of SemEval, pp. 497–511 (2016)Google Scholar
  2. 2.
    Alaa, Z., Tiun, S., Abdulameer, M.: Cross-language plagiarism of Arabic-English documents using linear logistic regression. J. Theor. Appl. Inf. Technol. 83 (2016)Google Scholar
  3. 3.
    Alzahrani, S.: Cross-language semantic similarity of Arabic-English short phrases and sentences. J. Comput. Sci. 12, 1–18 (2016)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bär, D., Biemann, C., Gurevych, I., Zesch, T.: UKP: computing semantic textual similarity by combining multiple content similarity measures. In: Proceedings of the First Joint Conference on Lexical and Computational Semantics, pp. 435–440. Association for Computational Linguistics (2012)Google Scholar
  5. 5.
    Barrón-Cedeño, A., Gupta, P., Rosso, P.: Methods for cross-language plagiarism detection. Knowl. Based Syst. 50, 211–217 (2013)CrossRefGoogle Scholar
  6. 6.
    Barrón-Cedeno, A., Rosso, P., Pinto, D., Juan, A.: On cross-lingual plagiarism analysis using a statistical model. In: PAN, pp. 1–10 (2008)Google Scholar
  7. 7.
    Bengio, Y., Ducharme, R., Vincent, P., Jauvin, C.: A neural probabilistic language model. J. Mach. Learn. Res. 3, 1137–1155 (2003)zbMATHGoogle Scholar
  8. 8.
    Cer, D., Diab, M., Agirre, E., Lopez-Gazpio, I., Specia, L.: Semeval-2017 task 1: semantic textual similarity multilingual and crosslingual focused evaluation. In: Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017), Vancouver, Canada, pp. 1–14. Association for Computational Linguistics, August 2017Google Scholar
  9. 9.
    Collobert, R., Weston, J.: A unified architecture for natural language processing: deep neural networks with multitask learning. In: Proceedings of the 25th International Conference on Machine learning, pp. 160–167. ACM (2008)Google Scholar
  10. 10.
    Ferrero, J., Agnes, F., Besacier, L., Schwab, D.: A multilingual, multi-style and multi-granularity dataset for cross-language textual similarity detection. In: 10th Edition of the Language Resources and Evaluation Conference (2016)Google Scholar
  11. 11.
    Franco-Salvador, M., Gupta, P., Rosso, P.: Cross-language plagiarism detection using a multilingual semantic network. In: Serdyukov, P., Braslavski, P., Kuznetsov, S.O., Kamps, J., Rüger, S., Agichtein, E., Segalovich, I., Yilmaz, E. (eds.) ECIR 2013. LNCS, vol. 7814, pp. 710–713. Springer, Heidelberg (2013). CrossRefGoogle Scholar
  12. 12.
    Gabrilovich, E., Markovitch, S.: Computing semantic relatedness using Wikipedia-based explicit semantic analysis. In: Proceedings of the 20th International Joint Conference on Artificial Intelligence (IJCAI 2007), Hyderabad, India, pp. 1606–1611. Morgan Kaufmann Publishers Inc., January 2007Google Scholar
  13. 13.
    Gahbiche-Braham, S., Bonneau-Maynard, H., Lavergne, T., Yvon, F.: Joint segmentation and POS tagging for Arabic using a CRF-based classifier. In: LREC, pp. 2107–2113 (2012)Google Scholar
  14. 14.
    Ganguly, D., Roy, D., Mitra, M., Jones, G.J.: Word embedding based generalized language model for information retrieval. In: Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 795–798. ACM (2015)Google Scholar
  15. 15.
    Gupta, P., Barrón-Cedeño, A., Rosso, P.: Cross-language high similarity search using a conceptual thesaurus. In: Catarci, T., Forner, P., Hiemstra, D., Peñas, A., Santucci, G. (eds.) CLEF 2012. LNCS, vol. 7488, pp. 67–75. Springer, Heidelberg (2012). CrossRefGoogle Scholar
  16. 16.
    Happe, A., Pouliquen, B., Burgun, A., Cuggia, M., Le Beux, P.: Automatic concept extraction from spoken medical reports. Int. J. Med. Inform. 70, 255–263 (2003)CrossRefGoogle Scholar
  17. 17.
    Hattab, E.: Cross-language plagiarism detection method: Arabic vs. English. In: 2015 International Conference on Developments of E-Systems Engineering (DeSE), pp. 141–144. IEEE (2015)Google Scholar
  18. 18.
    Kent, C.K., Salim, N.: Web based cross language plagiarism detection. In: 2010 Second International Conference on Computational Intelligence, Modelling and Simulation (CIMSiM), pp. 199–204. IEEE (2010)Google Scholar
  19. 19.
    Lee, M.C.: A novel sentence similarity measure for semantic-based expert systems. Expert Syst. Appl. 38, 6392–6399 (2011)CrossRefGoogle Scholar
  20. 20.
    Li, Y., McLean, D., Bandar, Z.A., O’shea, J.D., Crockett, K.: Sentence similarity based on semantic nets and corpus statistics. IEEE Trans. Knowl. Data Eng. 18, 1138–1150 (2006)CrossRefGoogle Scholar
  21. 21.
    Liu, C., Chen, C., Han, J., Yu, P.S.: GPLAG: detection of software plagiarism by program dependence graph analysis. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 872–881. ACM (2006)Google Scholar
  22. 22.
    Mcnamee, P., Mayfield, J.: Character n-gram tokenization for European language text retrieval. Inf. Retr. 7, 73–97 (2004)CrossRefGoogle Scholar
  23. 23.
    Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. In: Proceeding of the International Conference on Learning Representations Workshop Track, ICLR 2013, pp. 1301–3781 (2013)Google Scholar
  24. 24.
    Mikolov, T., Karafiát, M., Burget, L., Cernockỳ, J., Khudanpur, S.: Recurrent neural network based language model. In: Interspeech, vol. 2, p. 3 (2010)Google Scholar
  25. 25.
    Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Advances in Neural Information Processing Systems, pp. 3111–3119 (2013)Google Scholar
  26. 26.
    Mikolov, T., Yih, W.-T., Zweig, G.: Linguistic regularities in continuous space word representations. In: HLT-NAACL, vol. 13, pp. 746–751 (2013)Google Scholar
  27. 27.
    Miller, G.A.: Wordnet: a lexical database for english. Commun. ACM 38, 39–41 (1995)CrossRefGoogle Scholar
  28. 28.
    Mnih, A., Hinton, G.E.: A scalable hierarchical distributed language model. In: Koller, D., Schuurmans, D., Bengio, Y., Bottou, L. (eds.) Advances in Neural Information Processing Systems 21, pp. 1081–1088. Curran Associates Inc. (2009)Google Scholar
  29. 29.
    Muhr, M., Kern, R., Zechner, M., Granitzer, M.: External and intrinsic plagiarism detection using a cross-lingual retrieval and segmentation system. In: Notebook Papers of CLEF 2010 LABs and Workshops (2010)Google Scholar
  30. 30.
    Nagoudi, E.M.B., Schwab, D.: Semantic similarity of arabic sentences with word embeddings. In: Proceedings of the Third Arabic Natural Language Processing Workshop, pp. 18–24. Association for Computational Linguistics (2017)Google Scholar
  31. 31.
    Navigli, R., Ponzetto, S.P.: BabelNet: the automatic construction, evaluation and application of a wide-coverage multilingual semantic network. In: Proceedings of Artificial Intelligence, vol. 193, pp. 217–250 (2012)Google Scholar
  32. 32.
    Pataki, M.: A new approach for searching translated plagiarism (2012)Google Scholar
  33. 33.
    Pennington, J., Socher, R., Manning, C.D.: Glove: global vectors for word representation. In: EMNLP, vol. 14, pp. 1532–1543 (2014)Google Scholar
  34. 34.
    Pinto, D., Civera, J., Barrón-Cedeno, A., Juan, A., Rosso, P.: A statistical approach to crosslingual natural language tasks. J. Algorithms 64, 51–60 (2009)CrossRefzbMATHGoogle Scholar
  35. 35.
    Potthast, M., Barrón-Cedeño, A., Stein, B., Rosso, P.: Cross-language plagiarism detection. Lang. Resour. Eval. 45, 45–62 (2011)CrossRefGoogle Scholar
  36. 36.
    Potthast, M., Stein, B., Anderka, M.: A Wikipedia-based multilingual retrieval model. In: Macdonald, C., Ounis, I., Plachouras, V., Ruthven, I., White, R.W. (eds.) ECIR 2008. LNCS, vol. 4956, pp. 522–530. Springer, Heidelberg (2008). CrossRefGoogle Scholar
  37. 37.
    Rios, M., Specia, L.: UoW: multi-task learning Gaussian process for semantic textual similarity. In: Proceedings of SemEval, pp. 779–784 (2014)Google Scholar
  38. 38.
    Shao, Y.: Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval 2017) (2017)Google Scholar
  39. 39.
    Sultan, M.A., Bethard, S., Sumner, T.: DLS@CU: sentence similarity from word alignment and semantic vector composition. In: Proceedings of the 9th International Workshop on Semantic Evaluation, pp. 148–153 (2015)Google Scholar
  40. 40.
    Tian, J., Zhou, Z., Lan, M., Wu, Y.: Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval 2017) (2017)Google Scholar
  41. 41.
    Turian, J., Ratinov, L., Bengio, Y.: Word representations: a simple and general method for semi-supervised learning. In: Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics, pp. 384–394. Association for Computational Linguistics (2010)Google Scholar
  42. 42.
    Vinokourov, A., Shawe-Taylor, J., Cristianini, N.: Inferring a semantic representation of text via cross-language correlation analysis. In: NIPS 2002: Advances in Neural Information Processing Systems, pp. 1473–1480 (2003)Google Scholar
  43. 43.
    Wali, W., Gargouri, B., Hamadou, A.B.: Enhancing the sentence similarity measure by semantic and syntactico-semantic knowledge. Vietnam J. Comput. Sci. 4, 51–60 (2016)CrossRefGoogle Scholar
  44. 44.
    Wu, H., Huang, H., Jian, P., Guo, Y., Su, C.: In: Proceedings of the 11th International Workshop on Semantic Evaluation (semeval 2017) (2017)Google Scholar
  45. 45.
    Zahran, M.A., Magooda, A., Mahgoub, A.Y., Raafat, H., Rashwan, M., Atyia, A.: Word representations in vector space and their applications for Arabic. In: Gelbukh, A. (ed.) CICLing 2015. LNCS, vol. 9041, pp. 430–443. Springer, Cham (2015). Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • El Moatez Billah Nagoudi
    • 1
  • Jérémy Ferrero
    • 2
    • 3
  • Didier Schwab
    • 3
  • Hadda Cherroun
    • 1
  1. 1.Laboratoire d’Informatique et de Mathématique LIMAmar Telidji UniversityLaghouatAlgeria
  2. 2.CompilatioSaint-FélixFrance
  3. 3.LIG-GETALP, Univ. Grenoble AlpesGrenobleFrance

Personalised recommendations