A Survey of Extractive Arabic Text Summarization Approaches

Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 782)

Abstract

Automatic text summarization is an important research area originating from the late 50’s but not losing its celebrity until now. Over the past half a century, automatic text summarization has seen a great interest especially in English language. However, in Arabic language, few works have been done in this field. This paper intends to survey the most relevant approaches in Arabic text summarization, giving special emphasis to extractive techniques. The limitation of these approaches and the main difficulties faced when dealing with such application are also discussed. Special attention is devoted to the peculiarities of Arabic language, which have posed challenges to the task of summarization.

Keywords

Arabic text summarization Clustering Rhetorical Structure Theory (RST) Machine learning Graph theory Text entailment Extractive approaches Summary evaluation 

References

  1. 1.
    Gupta, V., Lehal, G.S.: A survey of text summarization extractive techniques. Emerg. Technol. Web Intell. 2(3), 258–268 (2010)Google Scholar
  2. 2.
    El-Shishtawy, T., El-Ghannam, F.: keyphrase based Arabic summarizer (KPAS). In: 8th International Conference on Informatics and Systems (INFOS), p. NLP-7. IEEE (2012)Google Scholar
  3. 3.
    Radev, D.R., Hovy, E., McKeown, K.: Introduction to the special issue on summarization. Comput. Linguist. 28(4), 399–408 (2002)CrossRefGoogle Scholar
  4. 4.
    Lloret, E., Ferrández, O., Munoz, R., Palomar, M.: A Text summarization approach under the influence of textual entailment. In: NLPCS, pp. 22–31 (2008)Google Scholar
  5. 5.
    Bawakid, A.: Automatic documents summarization using ontology based methodologies. Doctoral dissertation. University of Birmingham (2011)Google Scholar
  6. 6.
    Hasanuzzaman, H.: Arabic language: characteristics and importance. The Echo. J. Humanit. Soc. Sci. 1(3), 11–16 (2013)Google Scholar
  7. 7.
    Keskes, I., Zitoune, F.B., Belguith, L.H.: Splitting Arabic texts into elementary discourse units. ACM Trans. Asian Lang. Inf. Process. (TALIP) 13(2), (2014)Google Scholar
  8. 8.
    Shaheen, M., Ezzeldin, A.M.: Arabic question answering: systems, resources, tools, and future trends. Arabian J. Sci. Eng. 39(6), 4541–4564 (2014)CrossRefGoogle Scholar
  9. 9.
    Lloret, E., Palomar, M.: Text summarization in progress: a literature review. Artif. Intell. Rev. 37(1), 1–41 (2012)CrossRefGoogle Scholar
  10. 10.
    El-Haj, M., Kruschwitz, U., Fox, C.: Creating language resources for under-resourced languages: methodologies, and experiments with Arabic. Lang. Res. Eval. 49(3), 549–580 (2015)CrossRefGoogle Scholar
  11. 11.
    Luhn, H.P.: The automatic creation of literature abstracts. IBM J. Res. Dev. 2(2), 159–165 (1958)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Imam, I., Nounou, N., Abdul Khalek, H.: An ontology-based summarization system for Arabic documents (ossad). Int. J. Comput. Appl. 74(17), 38–43 (2013)Google Scholar
  13. 13.
    Lin, C.Y.: Rouge: a package for automatic evaluation of summaries. In: Moens, M., Szpakowicz, S. (eds.) Text Summarization Branches Out, Proceedings of the ACL 2004 Workshop, vol. 8 (2004)Google Scholar
  14. 14.
    Giannakopoulos, G., Karkaletsis, V.: AutoSummENG and MeMoG in evaluating guided summaries. In: TAC 2011 Workshop, Maryland, USA (2011)Google Scholar
  15. 15.
    Jones, K.S., Galliers, J.R. (eds.): Evaluating Natural Language Processing Systems. LNCS, vol. 1083. Springer, Heidelberg (1995).  https://doi.org/10.1007/BFb0027470 Google Scholar
  16. 16.
    Giannakopoulos, G.: Multi-document multilingual summarization and evaluation tracks. In: Proceedings of the MultiLing 2013 Workshop on Multilingual Multidocument Summarization, Sofia, Bulgaria, pp. 20–28 (2013)Google Scholar
  17. 17.
    Mann, W.C., Thompson, S.A.: Rhetorical structure theory: toward a functional theory of text organization. Text-Interdiscipl. J. Study Discourse 8(3), 243–281 (1988)CrossRefGoogle Scholar
  18. 18.
    AlSanie, W.: Towards a suitable rhetorical representation for Arabic text summarization. In Kotsis, G., Taniar, D., Bressan, S., Ibrahim, I.K., Mokhtar, S. (eds.) iiWAS, vol. 196, pp. 535–542. Austrian Computer Society (2005)Google Scholar
  19. 19.
    Mathkour, H.I.: A Novel rhetorical structure approach for classifying Arabic security documents. Int. J. Comput. Theory Eng. 1(3), 195 (2009)CrossRefGoogle Scholar
  20. 20.
    Azmi, A.M., Al-Thanyyan, S.: A text summarizer for Arabic. Comput. Speech Lang. 26(4), 260–273 (2012)CrossRefGoogle Scholar
  21. 21.
    Ibrahim, A., Elghazaly, T., Gheith, M.: A novel Arabic text summarization model based on rhetorical structure theory and vector space model. Int. J. Comput. Linguist. Nat. Lang. Process. 2(8), 480–485 (2013)Google Scholar
  22. 22.
    Asher, N., Lascarides, A.: Logics of Conversation. Cambridge University Press, Cambridge (2003)Google Scholar
  23. 23.
    Keskes, I.: Discourse analysis of Arabic documents and application to automatic summarization. Doctoral dissertation, Université de Toulouse (2015)Google Scholar
  24. 24.
    Oufaida, H., Nouali, O., Blache, P.: Minimum redundancy and maximum relevance for single and multi-document Arabic text summarization. King Saud Univ.-Comput. Inf. Sci. 26(4), 450–461 (2014)Google Scholar
  25. 25.
    Noori Fejer, H., Omar, N.: Automatic Arabic text summarization using clustering and keyphrase extraction. In: International Conference on Information Technology and Multimedia (ICIMU), pp. 293–298. IEEE (2014)Google Scholar
  26. 26.
    Haboush, A., Al-Zoubi, M., Momani, A., Tarazi, M.: Arabic text summarization model using clustering techniques. Word Comput. Sci. Inf. Technol. 2(3), 62–67 (2012)Google Scholar
  27. 27.
    El-Haj, M., Kruschwitz, U., Fox, C.: Exploring clustering for multi-document arabic summarisation. In: Salem, M.V.M., Shaalan, K., Oroumchian, F., Shakery, A., Khelalfa, H. (eds.) AIRS 2011. LNCS, vol. 7097, pp. 550–561. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-25631-8_50 CrossRefGoogle Scholar
  28. 28.
    Sobh, I., Darwish, N., Fayek, M.: An optimized dual classification system for Arabic extractive generic text summarization. In the 7th Conference on Language Engineering, pp. 149–154 (2006)Google Scholar
  29. 29.
    Abdel Fattah, M., Ren, F.: GA, MR, FFNN, PNN and GMM based models for automatic text summarization. Comput. Speech Lang. 23(1), 126–144 (2009)CrossRefGoogle Scholar
  30. 30.
    Boudabous, M.M., Maaloul, M.H., Belguith, L.H.: Digital learning for summarizing arabic documents. In: Loftsson, H., Rögnvaldsson, E., Helgadóttir, S. (eds.) NLP 2010. LNCS (LNAI), vol. 6233, pp. 79–84. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-14770-8_10 CrossRefGoogle Scholar
  31. 31.
    Belkebir, R., Guessoum, A.: A supervised approach to Arabic text summarization using adaboost. In: Rocha, A., Correia, A.M., Costanzo, S., Reis, L.P. (eds.) New Contributions in Information Systems and Technologies. AISC, vol. 353, pp. 227–236. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-16486-1_23 CrossRefGoogle Scholar
  32. 32.
    Al-Taani, A.T., Al-Omour, M.M.: An extractive graph-based Arabic text summarization approach. In: The International Arab Conference on Information Technology, Jordan (2014)Google Scholar
  33. 33.
    Al-Khawaldeh, F., Samawi, V.: Lexical cohesion and entailment based segmentation for Arabic text summarization (LCEAS). Word Comput. Sci. Inf. Technol. 5(3), 51–60 (2015)Google Scholar
  34. 34.
    Tatar, D., Mihis, A., Lupsa, D., Tamaianu-Morita, E.: Entailment based linear segmentation in summarization. Int. J. Softw. Eng. Knowl. Eng. 19(08), 1023–1038 (2009)CrossRefGoogle Scholar
  35. 35.
    Khalifa, I., Feki, Z., Farawila, A.: Arabic discourse segmentation based on rhetorical methods. Int. J. Electric. Comput. Eng. 11(1), 10–15 (2011)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Samira Lagrini
    • 1
  • Mohammed Redjimi
    • 2
  • Nabiha Azizi
    • 1
  1. 1.Labged Laboratory, Computer Science DepartmentBadji Mokhtar UniversityAnnabaAlgeria
  2. 2.Université 20 Août 1955SkikdaAlgeria

Personalised recommendations