Development and Improvement of the Visomotriz Coordination: Virtual Game of Learning and Using the Sphero Haptic Device for Alpha Generation

  • David Chilcañán Capelo
  • Milton Escobar Sánchez
  • Chrystian López Hidalgo
  • Daniela Benalcázar Chicaiza
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 721)


The haptic devices provide three-dimensional navigation and force feedback and integrates the sense of touch. In the area of education and child growth (5 to 6 years), the components of the psychomotor skills and particularly of the visomotriz coordination, allow to children through the virtual simulation of playful character, the increase and improvement in the handling of objects, the development of thinking toward the achievement of more complex skills such as reading and writing. The objective of this research is to explore the possibility of interaction through the sensory channels of girl children of the Alpha generation, with a virtual environment through physical contact and improve the experiences of learning and enrichment of the perception of the real world based on the virtual simulation, in this case by means of a virtual game using the Sphero haptic device.


Psychomotor skills Visomotriz Playful learning Alpha generation Sphero haptic device Virtual game 


  1. 1.
    Lin, C.-K., Meng, L.-F., Yu, Y.-W., Chen, C.-K., Li, K.-H.: Factor analysis of the contextual fine motor questionnaire in children. Research in Developmental Disabilities 35(2), 512–519 (2014). ISSN 0891-4222CrossRefGoogle Scholar
  2. 2.
    Comellas, M.J.: Psicomotricidad en la educación infantil: recursos pedagógicos. 2ª ed., 1ª imp. Grupo Editorial CEAC, S. A. Barcelona (2003)Google Scholar
  3. 3.
    Muñoz, L.: Educación psicomotriz, 4ª edn. Editorial Kinesis, Armenia Colombia (2003)Google Scholar
  4. 4.
    El-Sayed, M., El-Sayed, J.: Importance of psychomotor development for innovation and creativity. Int. J. Process Educ. 4(1), 1–6 (2012)Google Scholar
  5. 5.
    Bender, L.: Test guestáltico visomotor (B.G): usos y aplicaciones clínicas. 1ª ed., 17ª reimp. Buenos Aires. Paidós (2003)Google Scholar
  6. 6.
    Cameron, C.E., Brock, L.L., Murrah, W.M., Bell, L.H., Worzalla, S.L., Grissmer, D., et al.: Fine motor skills and executive function both contribute to kindergarten achievement. Child Dev. 83(4), 1229–1244 (2012)CrossRefGoogle Scholar
  7. 7.
    Cameselle, R.P.: Psicomotricidad: Teoría y praxis del desarrollo psicomotor en la infancia. Ideaspropias Editorial SL (2005)Google Scholar
  8. 8.
    Ospina, K.L.J., Mayorga, F.A.N., Villota, W.A.C.: Niños y adolescentes. Su dependencia de la tecnología móvil. Revista Pertinencia Académica (2), 57–68 (2017)Google Scholar
  9. 9.
    Thompson, P.: The digital natives as learners: Technology use patterns and approaches to learning. Comput. Educ. 65, 12–33 (2013). ISSN 0360-1315CrossRefGoogle Scholar
  10. 10.
    Unity Technologies: Unity software, Junio 2017.
  11. 11.
    Unity Documentation, Junio 2017.
  12. 12.
    Guinness, D., Szafir, D., Kane, S.K.: GUI Robots: Using off-the-shelf robots as tangible input and output devices for unmodified GUI applications. In: Proceedings of the 2017 Conference on Designing Interactive Systems, pp. 767–778. ACM (2017)Google Scholar
  13. 13.
    Microsoft Visual Studio, Mayo 2016.
  14. 14.
    Mamone, M.: Introducing development tools and MonoDevelop. In: Practical Mono, pp. 21–40 (2006)Google Scholar
  15. 15.
    Sphero, Junio 2015.
  16. 16.
    Mendez-Zorrilla, A., Garcia-Zapirain, B., Eskubi-Astobiza, J., Fernandez-Cordero, L.: Sphero as an interactive tool in computer games for people with ID. In: 2015 Computer Games: AI, Animation, Mobile, Multimedia, Educational and Serious Games (CGAMES), pp. 99–102. IEEE, July 2015Google Scholar
  17. 17.
    Carroll, J., Polo, F.: Augmented reality gaming with sphero. In: ACM SIGGRAPH 2013 Mobile, p. 17. ACM, July 2013Google Scholar
  18. 18.
    Kurkovsky, S.: Android+Sphero: teaching mobile computing and robotics in a single course. In: Proceeding of the 44th ACM Technical Symposium on Computer Science Education, p. 765. ACM, March 2013Google Scholar
  19. 19.
    Trower, J., Gray, J.: Blockly language creation and applications: Visual programming for media computation and bluetooth robotics control. In: Proceedings of the 46th ACM Technical Symposium on Computer Science Education, p. 5. ACM, February 2015Google Scholar
  20. 20.
    Carlson, D., Pagel, M.: Tap to interact: Towards dynamically remixing the internet of things. In: Proceedings of the 11th International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services, pp. 376–378. ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering), December 2014Google Scholar
  21. 21.
    Albiol-Pérez, S., Pruna-Panchi, E.P., Escobar-Anchaguano, I.P., Bucheli-Andrade, J.G., Pilatasig-Panchi, M.A., Mena-Mena, L.E., Zumbana, P.: Acceptance and suitability of a novel virtual system in chronic acquired brain injury patients. In: Rocha, Á., Correia, A., Adeli, H., Reis, L., Mendonça Teixeira, M. (eds.) New Advances in Information Systems and Technologies. Advances in Intelligent Systems and Computing, vol. 444, pp. 1065–1071. Springer, Cham (2016)CrossRefGoogle Scholar
  22. 22.
    Matos, N., Santos, A., Vasconcelos, A.: Kinteract: A multi-sensor physical rehabilitation solution based on interactive games. In: Proceedings of the 8th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth 2014), pp. 350–353 (2014)Google Scholar
  23. 23.
    Golestan, S., Soleiman, P., Moradi, H.: Feasibility of using sphero in rehabilitation of children with autism in social and communication skills. In: 2017 International Conference on Rehabilitation Robotics (ICORR), pp. 989–994. IEEE, July 2017Google Scholar
  24. 24.
    Biggs, S.J., Srinivasan, M.A.: Haptic interfaces. In: Stanney, K.M. (ed.) Handbook of Virtual Environments: Design, Implementation, and Applications, pp. 93–115. Erlbaum, Mahwah (2002)Google Scholar
  25. 25.
    Monroy, M., Oyarzabal, M., Ferre, M., Cobos, S., Barrio, J., Ortego, J.: Dispositivos hápticos: Una forma de realizar la interacción hombremáquina. Domótica, Robótica y Teleasistencia para Todos, p. 39 (2007)Google Scholar
  26. 26.
    Ariza, V.Z.P., Santís-Chaves, M.: Interfaces Hápticas: Sistemas Cinestésicos Vs. Sistemas Táctiles. Revista EIA 13(26) (2017)Google Scholar
  27. 27.
    Chen, L.J., Holbein, M., Zelek, J.S.: Intro to haptic communications for high school students. In: 2006 Proceedings- IEEE International Conference on Robotics and Automation, pp. 733–738, May 2006Google Scholar
  28. 28.
    Nakamura, M., Jones, L.A., Sonin, A.A.: A Torso Haptic Display based on Shape Memory Alloy Actuators. Thesis. Master of Science in Mechanical Engineering. Massachusetts Institute of Technology (2003)Google Scholar
  29. 29.
    Robalino Ramos, M.E.: Desarrollo de actividades interactivas para tablet como apoyo en la coordinación visomotora en niños de primer año de educación básica (Bachelor’s thesis, Pontificia Universidad Católica del Ecuador) (2017)Google Scholar
  30. 30.
    Rojas Alcón, A.: Desarrollo de una aplicación móvil multiplataforma utilizando un Sphero para la enseñanza de programación en niños (Doctoral dissertation) (2015)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • David Chilcañán Capelo
    • 1
  • Milton Escobar Sánchez
    • 1
  • Chrystian López Hidalgo
    • 1
  • Daniela Benalcázar Chicaiza
    • 2
  1. 1.Universidad de las Fuerzas Armadas ESPESangolquíEcuador
  2. 2.Universidad Técnica de Ambato UTAAmbatoEcuador

Personalised recommendations