MORPHY: A Multiobjective Software Tool for Phylogenetic Inference of Protein Coded Sequences

  • Cristian Zambrano-Vega
  • Antonio J. Nebro
  • José F. Aldana Montes
  • Byron Oviedo
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 721)

Abstract

Most of software solutions for phylogenetic inference try to find the best phylogenetic tree according to one reconstruction criterion, maximum parsimony or maximum likelihood, making the exploration of different hypothesis based on these two features a complex process. In this work, we present a novel software tool for phylogenetic inference based on a multiobjective approach called MORPHY, which searches for a set of compromise solutions according to the criteria of maximum parsimony and maximum likelihood at the same time. This tool not only works with DNA sequences, but also allows to deal with protein coded datasets. It is implemented using the multiobjective and phylogenetic features of the software MO-Phylogenetics, and the program outputs are a set of optimized trees in Newick format. A consensus tree from all the obtained solutions can also be produced. MORPHY’s executable, source code, and sample datasets are publicly available at the web repository: https://github.com/KhaosResearch/MORPHY.

Keywords

Multiobjective metaheuristics Phylogenetics Optimization tools Computational biology 

Notes

Acknowledgements

This work has been partially supported by the 4th convocation of Fondo Competitivo de Investigación Científica y Tecnológica FOCICYT of the Universidad Técnica Estatal de Quevedo from Ecuador, and Spanish Grants TIN2014-58304-R (Ministerio de Ciencia e Innovación, Spain), P11-TIC-7529 and P12-TIC-1519 (Plan Andaluz I+D+I - Junta de Andalucía, Spain).

References

  1. 1.
    Felsenstein, J.: Inferring Phylogenies. Palgrave Macmillan (2004). http://books.google.fr/books?id=GI6PQgAACAAJ
  2. 2.
    Steel, M., Penny, D.: Parsimony, likelihood, and the role of models in molecular phylogenetics. Mol. Biol. Evol. 17(6), 839–850 (2000)CrossRefGoogle Scholar
  3. 3.
    Santander-Jiménez, S., Vega-Rodríguez, M.A.: A hybrid approach to parallelize a fast non-dominated sorting genetic algorithm for phylogenetic inference. Concurrency and Computation: Practice and Experience (Apr 2014)Google Scholar
  4. 4.
    Santander-Jiménez, S., Vega-Rodríguez, M.A.: A multiobjective proposal based on the firefly algorithm for inferring phylogenies. In: Evolutionary Computation, Machine Learning and Data Mining. LNCS, vol. 7833, pp. 141–152. Springer, Heidelberg (2013)Google Scholar
  5. 5.
    Edwards, A., Cavalli-Sforza, L., Heywood, V., et al.: Phenetic and phylogenetic classification. Systematic Association Publication No. 6, pp. 67–76 (1964)Google Scholar
  6. 6.
    Day, W.H., Johnson, D.S., Sankoff, D.: The computational complexity of inferring rooted phylogenies by parsimony. Math. Biosci. 81(1), 33–42 (1986)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Chor, B., Tuller, T.: Maximum likelihood of evolutionary trees: hardness and approximation. Bioinformatics 21(suppl 1), i97–i106 (2005)CrossRefMATHGoogle Scholar
  8. 8.
    Swofford, D., Olsen, G., Waddell, P., Hillis, D.: Phylogeny reconstruction. In: Molecular Systematics, Chap. 11, 3rd edn., pp. 407–514. Sinauer (1996)Google Scholar
  9. 9.
    Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE T. Evol. Comp. 6(2), 182–197 (2002)CrossRefGoogle Scholar
  10. 10.
    Zambrano-Vega, C., Nebro, A., Aldana-Montes, J.: Mo-phylogenetics: a phylogenetic inference software tool with multi-objective evolutionary metaheuristics. Methods Ecol. Evol. 7(7), 800–805 (2016).  https://doi.org/10.1111/2041-210X.12529CrossRefGoogle Scholar
  11. 11.
    López-Camacho, E., García-Godoy, M.J., Nebro, A.J., Aldana-Montes, J.F.: jMetalCpp: optimizing molecular docking problems with a C++ metaheuristic framework. Bioinformatics 30(3), 437–438 (2014)CrossRefGoogle Scholar
  12. 12.
    Flouri, T., Izquierdo-Carrasco, F., Darriba, D., Aberer, A., Nguyen, L.T., Minh, B., Von Haeseler, A., Stamatakis, A.: The phylogenetic likelihood library. Syst. Biol. 64(2), 356–362 (2015)CrossRefGoogle Scholar
  13. 13.
    Dutheil, J., Gaillard, S., Bazin, E., Glémin, S., Ranwez, V., Galtier, N., Belkhir, K.: Bio++: a set of C++ libraries for sequence analysis, phylogenetics, molecular evolution and population genetics. BMC Bioinformatics 7, 188 (2006). http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1501049&tool=pmcentrez&rendertype=abstract
  14. 14.
    Darriba, D., Taboada, G.L., Doallo, R., Posada, D.: jModelTest 2: more models, new heuristics and parallel computing. Nat. Methods 9(8), 772–772 (2012)CrossRefGoogle Scholar
  15. 15.
    Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in C: The Art of Scientific Computing, 2nd edn. (1992)Google Scholar
  16. 16.
    Goëffon, A., Richer, J.M., Hao, J.K.: Progressive tree neighborhood applied to the maximum parsimony problem. IEEE/ACM Trans. Comput. Biol. Bioinform. 5(1), 136–45 (2008). http://www.ncbi.nlm.nih.gov/pubmed/18245882CrossRefGoogle Scholar
  17. 17.
    Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evolutionary Computation 11(6), 712–731 (2007)CrossRefGoogle Scholar
  18. 18.
    Beume, N., Naujoks, B., Emmerich, M.: SMS-EMOA: Multiobjective selection based on dominated hypervolume. Eur. J. Oper. Res. 181(3), 1653–1669 (2007)CrossRefMATHGoogle Scholar
  19. 19.
    Sanderson, M., Donoghue, M., Piel, W., Eriksson, T.: TreeBASE: a prototype database of phylogenetic analyses and an interactive tool for browsing the phylogeny of life. Am. J. Bot. 81(6), 183 (1994)Google Scholar
  20. 20.
    Nguyen, L.T., Schmidt, H.A., von Haeseler, A., Minh, B.Q.: IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32(1), 268–274 (2015)CrossRefGoogle Scholar
  21. 21.
    Macey, J.R.: Plethodontid salamander mitochondrial genomics: a parsimony evaluation of character conflict and implications for historical biogeography. Cladistics 21(2), 194–202 (2005).  https://doi.org/10.1111/j.1096-0031.2005.00054.xCrossRefGoogle Scholar
  22. 22.
    Burleigh, J.G., Mathews, S.: Assessing systematic error in the inference of seed plant phylogeny. Int. J. Plant Sci. 168(2), 125–135 (2007)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Cristian Zambrano-Vega
    • 1
  • Antonio J. Nebro
    • 2
  • José F. Aldana Montes
    • 2
  • Byron Oviedo
    • 1
  1. 1.Facultad de Ciencias de la IngenieríaUniversidad Técnica Estatal de QuevedoQuevedoEcuador
  2. 2.Edificio de Investigación Ada ByronUniversidad de MálagaMálagaSpain

Personalised recommendations