Proposal of a Supply Chain Architecture Immersed in the Industry 4.0

Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 721)

Abstract

This article shows a proposal of the architecture that can be adopted by the supply chains immersed in the industry 4.0, that its considered like the fourth industrial revolution, where the virtual and the real world merge. The employed methodology consists in different phases that began with the review of the state of the investigation literature, making an exhaustive and methodical analysis of the proposals, advances, methodologies, future investigations, results and conclusions obtained. As second, the architecture is proposed and as third, starting out from the architecture, a mobile application is created, finishing with the validation of the architecture, checking the usability of the mobile application. The mobile application was validated through a mathematical model that measures the usability of the application. For that reason, the connection between the sensor layer and the application layer gets validated. The present investigation exposes the tools that offer guidelines to the supply chain to be included in the industry 4.0 and gain competitive advantages.

Keywords

Big Data Industry 4.0 Internet of things Cloud computing Supply chain 

References

  1. 1.
    Ang, J., Goh, C., Saldivar, A., Li, Y.: Energy-efficient through-life smart design, manufacturing and operation of ships in an Industry 4.0 environment. Energies 10(5), 610 (2017)CrossRefGoogle Scholar
  2. 2.
    Mrugalska, B., Wyrwicka, M.K.: Towards lean production in Industry 4.0. Procedia Eng. 182, 466–473 (2017)CrossRefGoogle Scholar
  3. 3.
    Qin, J., Liu, Y., Grosvenor, R.: A categorical framework of manufacturing for Industry 4.0 and beyond. Procedia CIRP 52, 173–178 (2016)CrossRefGoogle Scholar
  4. 4.
    Jayaram, A.: Lean six sigma proposal for global supply chain management using Industry 4.0 and IIoT. In: 2016 2nd International Conference on Contemporary Computing and Informatics, pp. 89–94 (2016)Google Scholar
  5. 5.
    International Electrotechnical Commission, Factory of the future, White Paper Future Factory, pp. 44–47 (2015). http://www.qualitymag.com/articles/93484-stepping-up-to-the-factory-of-the-future
  6. 6.
    Díez, V., Arriola, A., Val, I., Vélez, M.: Validation of RF communication systems for Industry 4.0 through channel modeling and emulation. In: 2017 IEEE International Workshop of Electronics, Control, Measurement, Signals and their Application to Mechatronics (ECMSM), pp. 1–6 (2017)Google Scholar
  7. 7.
    Spendla, L., Kebisek, M., Tanuska, P., Hrcka, L.: Concept of predictive maintenance of production systems in accordance with Industry 4.0. In: Proceedings of the 2017 IEEE 15th International Symposium on Applied Machine Intelligence and Informatics, SAMI 2017, pp. 405–410 (2017)Google Scholar
  8. 8.
    Meissner, H., Ilsen, R., Aurich, J.C.: Analysis of control architectures in the context of Industry 4.0. Procedia CIRP 62, 165–169 (2017)CrossRefGoogle Scholar
  9. 9.
    Thames, L., Schaefer, D.: Software-defined cloud manufacturing for Industry 4.0. Procedia CIRP 52, 12–17 (2016)CrossRefGoogle Scholar
  10. 10.
    Farooq, M.J., Zhu, Q.: Secure and reconfigurable network design for critical information dissemination in the Internet of Battlefield Things (IoBT). In: 2017 15th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt), Paris, pp. 1–8 (2017)Google Scholar
  11. 11.
    Alkhabbas, F., Spalazzese, R., Davidsson, P.: Emergent configurations in the internet of things as system of systems. In: 2017 IEEE/ACM Joint 5th International Workshop on Software Engineering for Systems-of-Systems and 11th Workshop on Distributed Software Development, Software Ecosystems and Systems-of-Systems (JSOS), pp. 70–71 (2017)Google Scholar
  12. 12.
    Iglesias-Urkia, M., Orive, A., Urbieta, A.: Analysis of CoAP implementations for industrial internet of things: a survey. In: The 8th International Conference on Ambient Systems, Networks and Technologies (ANT 2017), no. 2016 (2017)Google Scholar
  13. 13.
    Saarikko, T., Westergren, U.H., Blomquist, T.: The internet of things: are you ready for what’s coming? Bus. Horiz. 60, 667–676 (2017). http://www.sciencedirect.com/science/article/pii/S000768131730068XCrossRefGoogle Scholar
  14. 14.
    Mourtzis, D., Vlachou, E., Milas, N.: Industrial big data as a result of iot adoption in manufacturing. Procedia CIRP 55, 290–295 (2016)CrossRefGoogle Scholar
  15. 15.
    Ghosh, D.: Big data in logistics and supply chain management - a rethinking step. In: 2015 International Symposium on Advanced Computing and Communication, pp. 168–173 (2015)Google Scholar
  16. 16.
    Khan, M., Wu, X., Xu, X., Dou, W.: Big data challenges and opportunities in the hype of Industry 4.0. In: 2017 IEEE International Conference on Communications (ICC), pp. 1–6. IEEE, May 2017Google Scholar
  17. 17.
    Khan, N., Al-Yasiri, A.: Identifying cloud security threats to strengthen cloud computing adoption framework. Procedia Comput. Sci. 94, 485–490 (2016)CrossRefGoogle Scholar
  18. 18.
    Raza, M.H., Adenola, A.F., Nafarieh, A., Robertson, W.: The slow adoption of cloud computing and IT workforce. Procedia Comput. Sci. 52(1), 1114–1119 (2015). http://www.sciencedirect.com/science/article/pii/S187705091500928XCrossRefGoogle Scholar
  19. 19.
    Choi, T.-M., Shen, B.: A system of systems framework for sustainable fashion supply chain management in the big data era. In: 2016 IEEE 14th International Conference on Industrial Informatics, pp. 902–908 (2016)Google Scholar
  20. 20.
    Hussain, S.A., Fatima, M., Saeed, A., Raza, I., Shahzad, R.K.: Multilevel classification of security concerns in cloud computing. Appl. Comput. Inform. 13(1), 57–65 (2017)CrossRefGoogle Scholar
  21. 21.
    Pop, D.: Machine Learning and Cloud Computing: Survey of Distributed and SaaS Solutions, Institute e-Austria Timisoara, Technical report 1 (2012). https://arxiv.org/pdf/1603.08767.pdf
  22. 22.
    Talwar, A., Kumar, Y.: Machine learning: an artificial intelligence methodology. Int. J. Eng. Comput. Sci. 2(12), 3400–3405 (2013). http://www.ijecs.in/issue/v2-i12/11%20ijecs.pdfGoogle Scholar
  23. 23.
    Stăncioiu, A.: The Fourth Industrial Revolution, no. 1, pp. 74–79 (2017). http://bit.ly/2wncneN
  24. 24.
    Lasi, H., Fettke, P., Kemper, H.-G., Feld, T., Hoffmann, M.: Industry 4.0. Bus. Inf. Syst. Eng. 6(4), 239 (2014). https://www.cgi.com/en/white-paper/Industry-4-making-your-business-more-competitiveGoogle Scholar
  25. 25.
    Di Deco Sampedro, J., Díaz García, J.: Estudio y aplicación de técnicas de machine learning orientadas al ámbito médico: estimación y explicación de predicciones individuales, p. 103 (2012). https://repositorio.uam.es/handle/10486/12100
  26. 26.
    Chaouni Benabdellah, A., Benghabrit, A., Bouhaddou, I., Zemmouri, E.M.: Big data for supply chain management: opportunities and challenges. Int. J. Sci. Eng. Res. 7(11), 20–25 (2016). https://www.ijser.org/researchpaper/Big-Data-for-Supply-Chain-Management-Opportunities-and-Challenges.pdfGoogle Scholar
  27. 27.
    Manuel, J., Lovelle, C., Enrique, C., Marín, M.: Metamodelo para la integración de la internet of things y redes sociales (2014). http://di002.edv.uniovi.es/~cueva/investigacion/tesis/Tesis-JoseIgnacio.pdf
  28. 28.
    Ang, J.H., Goh, C., Li, Y.: Smart design for ships in a smart product through-life and Industry 4.0 environment. In: 2016 IEEE Congress on Evolutionary Computation, CEC 2016, pp. 5301–5308 (2016)Google Scholar
  29. 29.
    Turri, A.M., Smith, R.J., Kopp, S.W.: Privacy and RFID technology: a review of regulatory efforts. J. Consum. Aff. 51(2), 329–354 (2017). http://onlinelibrary.wiley.com/doi/10.1111/joca.12133/abstractCrossRefGoogle Scholar
  30. 30.
    Asensio Blasco, E.: Aplicación de técnicas de minería de datos en redes sociales/web, p. 50 (2015). https://riunet.upv.es/handle/10251/56102
  31. 31.
    Ularu, E.G., Puican, F.C., Suciu, G., Vulpe, A., Todoran, G.: Mobile computing and cloud maturity-introducing machine learning for ERP configuration automation. Inform. Econ. 17(1), 40 (2013)Google Scholar
  32. 32.
    Molano, J.I.R., Yara, E.S., Garcia, L.K.J.: Model for measuring usability of survey mobile apps, by analysis of usability evaluation methods and attributes. In: 2015 10th Iberian Conference on Information Systems and Technologies, CISTI 2015 (2015). http://ieeexplore.ieee.org/document/7170420/

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Universidad Distrital Francisco José de CaldasBogotaColombia

Personalised recommendations