Advertisement

Analysis and Implementation of ETL System for Unmanned Aerial Vehicles (UAV)

  • Wilson Medina-Pazmiño
  • Aníbal Jara-Olmedo
  • Cristian Tasiguano-Pozo
  • José M. Lavín
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 721)

Abstract

Unmanned Air Vehicles are technological tools that in recent years have raised interest in researchers and developers for their multiple civil and military applications. UAVs carry on board a large number of sensors and electronic equipment to ensure optimal operation. However, several times these devices are from different suppliers or developers making difficult to integrate them in the aircraft. To solve this integration problem, an application based on ETL (Extraction, Transformation and Load) systems is presented. ETL system extracts, processes and shares information from propulsion, communication, transponder, electro-optical and energy systems. ETL systems integrate signals with different communication protocols, providing efficiency and high speed in data processing. The ETL system is developed in embedded platform with multi-task execution capabilities and real-time information processing. ETL system integrates equipment with different communication protocols in order to facilitate operation, control, monitor and information record tasks of UAV.

Keywords

ETL system UAV Multitask Information management Real time RS232 Communication protocol 

References

  1. 1.
    Fahlstrom, P., Gleason, T.: Introduction to UAV Systems, 1st edn. Wiley, Hoboken, N.J. (2013)Google Scholar
  2. 2.
    Sieberth, T., Wackrow, R., Chandler, J.: Automatic detection of blurred images in UAV image sets. ISPRS J. Photogrammetry Rem. Sens. 122, 1–16 (2016).  https://doi.org/10.1016/j.isprsjprs.2016.09.010CrossRefGoogle Scholar
  3. 3.
    Ribeiro-Gomes, K., Hernandez-Lopez, D., Ballesteros, R., Moreno, M.: Approximate georeferencing and automatic blurred image detection to reduce the costs of UAV use in environmental and agricultural applications. Biosyst. Eng. 151, 308–327 (2016).  https://doi.org/10.1016/j.biosystemseng.2016.09.014CrossRefGoogle Scholar
  4. 4.
    d’Oleire-Oltmanns, S., Marzolff, I.: UAV derived data for the monitoring of gully erosion in the Souss Basin, Morocco. In: European Geosciences Union General Assembly Conference, vol. 14, p. 911 (2012)Google Scholar
  5. 5.
    Valencia-Redrovan, D., Guijarro-Rubio, O., Basantes-Montero, D., Enríquez-Champutiz, V.: Analysis, design, and implementation of an autopilot for unmanned aircraft - UAV’s based on fuzzy logic. In: 2015 Asia-Pacific Conference on Computer Aided System Engineering (APCASE), pp. 196–201 (2015).  https://doi.org/10.1109/APCASE.2015.42
  6. 6.
    Medina-Pazmino, W., Jara-Olmedo, A., Valencia-Redrovan, D.: Analysis and determination of minimum requirements for a data link communication system for unmanned aerial vehicles- UAV’s. In: 2016 IEEE Ecuador Technical Chapters Meeting (ETCM), vol. 1 (2016). IEEE Press, New York (2016). http://dx.doi.org/10.1109/etcm.2016.7750816
  7. 7.
    Zwick, H.H.: Passive electro-optical remote sensors at the Canada centre for remote sensing. Can. J. Rem. Sens. 4, 51–62 (1978) http://dx.doi.org/10.1080/07038992.1978.10854967
  8. 8.
    Guerrero, J., González, A., Vega, J., Tovar, L.: Instrumentation of an array of ultrasonic sensors and data processing for unmanned aerial vehicle (UAV) for teaching the application of the kalman filter. Procedia Comput. Sci. 75, 375–380 (2015).  https://doi.org/10.1016/j.procs.2015.12.260CrossRefGoogle Scholar
  9. 9.
    Li-Qun, L., Hui, Z.: The research of light UAV management computer system. Int. J. Control Autom. 8(2), 281–290 (2015). http://dx.doi.org/10.14257/ijca.2015.8.2.27
  10. 10.
    Electronic y Electric Industries Association of Chile.: Protocolos de comunicaciones industriales [en línea]. Asociación de la Industria Eléctrica y Electrónica, Vicuña (Chile) (2011)Google Scholar
  11. 11.
    Bansal, S.K.: Towards a semantic extract-transform-load (ETL) framework for big data integration. In: 2014 IEEE International Congress on Big Data, Anchorage, AK 2014, pp. 522–529. IEEE Press, New York (2014).  https://doi.org/10.1109/BigData.Congress.2014.82
  12. 12.
    McGee, W.: Three stage process speeds path to avionics system deployment. Cots J. (2016). http://archive.cotsjournalonline.com/articles/view/106078. Accessed: 08 Jan 2017
  13. 13.
    Cherukuri, R.: Design and development of a project-based embedded system laboratory using PIC 18F25K20. Am. J. Embedded Syst. Appl. 2(3), 21 (2014).  https://doi.org/10.11648/j.ajesa.20140203.12
  14. 14.
    Airforce-Technology on Line: Heron/Machatz 1 Unmanned Aerial Vehicle (UAV), Israel (2017). http://www.airforce-technology.com/projects/heron-uav/. Accessed: 08 Jan 2017
  15. 15.
    Sboui, L., Ghazzai, H., Rezki, Z., Alouini, M.S.: Achievable rates of UAV-relayed cooperative cognitive radio MIMO systems. In: IEEE Access, vol. 5, pp. 5190–5204. IEEE Press, New York (2017).  https://doi.org/10.1109/ACCESS.2017.2695586
  16. 16.
    Choi, H., Geeves, M., Alsalam, B., Gonzalez, F.: Open source computer-vision based guidance system for UAVs on-board decision making. In: 2016 IEEE Aerospace Conference, Big Sky, MT, pp. 1–5. IEEE Press, New York (2016).  https://doi.org/10.1109/AERO.2016.7500600
  17. 17.
    Chen, N.: Design of micro inertial navigation computer and data real-time displaying system based on FPGA. Adv. Mater. Res. 919–921, 2123–2126 (2014).  https://doi.org/10.4028/www.scientific.net/AMR.919-921.2123CrossRefGoogle Scholar
  18. 18.
    Abdallah, M., Elkeelany, O.: A survey on data acquisition systems DAQ. Int. Conf. Comput. Eng. Inf., 240–243 (2009).  https://doi.org/10.1109/ICC.2009.24
  19. 19.
    Li, M., Li, G., Zhong, M.: A data driven fault detection and isolation scheme for UAV flight control system. In: 2016 35th Chinese Control Conference (CCC), Chengdu, pp. 6778–6783 (2016).  https://doi.org/10.1109/ChiCC.2016.7554425
  20. 20.
    Xia, M., Gong, L., Lyu, Y., Qi, Z., Liu, X.: Effective real-time android application auditing. In: 2015 IEEE Symposium on Security and Privacy 2015, pp. 899–914. IEEE Press, New York (2015).  https://doi.org/10.1109/SP.2015.60
  21. 21.
    Maulding, G.: RS232 interface circuits for 3.3 V systems. In: Dodkin, B., Hamburger, J (Eds.) Analog Circuit Design, pp. 849–850. Elsevier, Oxford (2015)Google Scholar
  22. 22.
    Radonjic, A., Vujicic, V.: Integer codes correcting high-density byte asymmetric errors. IEEE Commun. Lett. 21(4), 694–697 (2017).  https://doi.org/10.1109/LCOMM.2016.2644661
  23. 23.
    Guillaud, X., Faruque, M.O., Teninge, A., Hariri, A.H., Vanfretti, L., Paolone, M., Dinavahi, V., Mitra, P., Lauss, G., Dufour, C., Forsyth, P., Srivastava, A.K., Strunz, K., Strasser, T., Davoudi, A.: Applications of real-time simulation technologies in power and energy systems. IEEE Power Energy Technol Syst. J. 2(3), 103–115 (2015)Google Scholar
  24. 24.
    Nakayama, K., Cha, B., Kanaoka, Y., Isahaya, N., Omori, M., Uno, M., Takeya, J.: Organic temperature sensors and organic analog-to-digital converters based on p-type and n-type organic transistors. Org. Electron 36, 148–152 (2016)Google Scholar
  25. 25.
    Feng, W., Chen, X.: LED visible light communication system based on FPGA. In: 2015 IEEE Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), pp. 428–432 (2015).  https://doi.org/10.1109/IAEAC.2015.7428589

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.CIDFAE, Centro de Investigación y Desarrollo de la Fuerza Aérea EcuatorianaAmbatoEcuador
  2. 2.Escuela Politécnica NacionalQuitoEcuador
  3. 3.Decisions and Innovation GroupUniversidad Técnica de AmbatoAmbatoEcuador

Personalised recommendations