Advertisement

Real Time Driver Drowsiness Detection Based on Driver’s Face Image Behavior Using a System of Human Computer Interaction Implemented in a Smartphone

  • Eddie E. Galarza
  • Fabricio D. Egas
  • Franklin M. Silva
  • Paola M. Velasco
  • Eddie D. Galarza
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 721)

Abstract

The main reason for motor vehicular accidents is the driver drowsiness. This work shows a surveillance system developed to detect and alert the vehicle driver about the presence of drowsiness. It is used a smartphone like small computer with a mobile application using Android operating system to implement the Human Computer Interaction System. For the detection of drowsiness, the most relevant visual indicators that reflect the driver’s condition are the behavior of the eyes, the lateral and frontal assent of the head and the yawn. The system works adequately under natural lighting conditions and no matter the use of driver accessories like glasses, hearing aids or a cap. Due to a large number of traffic accidents when driver has fallen asleep this proposal was developed in order to prevent them by providing a non-invasive system, easy to use and without the necessity of purchasing specialized devices. The method gets 93.37% of drowsiness detections.

Keywords

Drowsiness detection Artificial vision Mobile app PERCLOS Face detection 

References

  1. 1.
  2. 2.
    Ji, Q., Yang, X.: Real-time eye, gaze, and face pose tracking for monitoring driver vigilance. Real Time Imaging 8(5), 357–377 (2002)CrossRefzbMATHGoogle Scholar
  3. 3.
    Lee, B.G., Chung, W.Y.: A smartphone-based driver safety monitoring system using data fusion. Sensors 12(12), 17536–17552 (2012)CrossRefGoogle Scholar
  4. 4.
    He, J., Roberson, S., Fields, B., Peng, J., Cielocha, S., Coltea, J.: Fatigue detection using smartphones. J. Ergon. 3(3), 1–7 (2013)Google Scholar
  5. 5.
    Chang, K., Oh, B.H., Hong, K.S.: An implementation of smartphone-based driver assistance system using front and rear camera. In: 2014 IEEE International Conference on Consumer Electronics (ICCE), pp. 280–281. IEEE (2014)Google Scholar
  6. 6.
    Xu, L., Li, S., Bian, K., Zhao, T., Yan, W.: Sober-Drive: a smartphone-assisted drowsy driving detection system. In: 2014 International Conference on Computing, Networking and Communications (ICNC), pp. 398–402. IEEE (2014)Google Scholar
  7. 7.
    Li, G., Chung, W.Y.: Detection of driver drowsiness using wavelet analysis of heart rate variability and a support vector machine classifier. Sensors 13(12), 16494–16511 (2013)CrossRefGoogle Scholar
  8. 8.
    Smirnov, A.V., Kashevnik, A., Lashkov, I., Baraniuc, O., Parfenov, V.: Smartphone-based identification of dangerous driving situations: algorithms and implementation. In: FRUCT, pp. 306–313 (2016)Google Scholar
  9. 9.
    Singh, H., Bhatia, J.S., Kaur, J.: Eye tracking based driver fatigue monitoring and warning system. In: 2010 India International Conference on Power Electronics (IICPE), pp. 1–6. IEEE (2011)Google Scholar
  10. 10.
    Grace, R., Byrne, V.E., Bierman, D.M., Legrand, J.M., Gricourt, D., Davis, B.K., Staszewski, J.J., Carnahan, B.: A drowsy driver detection system for heavy vehicles. In: Proceedings of the 17th AIAA/IEEE/SAE Digital Avionics Systems Conference, DASC, vol. 2, pp. I36/1–I36/8. IEEE (1998)Google Scholar
  11. 11.
    Grace, R., Steward, S.: Drowsy driver monitor and warning system. In: International Driving Symposium on Human Factors in Driver Assessment, Training and Vehicle Design, vol. 8, pp. 201–208 (2001)Google Scholar
  12. 12.
    Kozak, K., Pohl, J., Birk, W., Greenberg, J., Artz, B., Blommer, M., Cathey, L., Curry, R.: Evaluation of lane departure warnings for drowsy drivers. Proc. Hum. Factors Ergon. Soc. Annu. Meet. 50(22), 2400–2404 (2006). Sage Publications, Los Angeles, CACrossRefGoogle Scholar
  13. 13.
    Garcia, I., Bronte, S., Bergasa, L.M., Almazán, J., Yebes, J.: Vision-based drowsiness detector for real driving conditions. In: IEEE Intelligent Vehicles Symposium (IV), pp. 618–623. IEEE (2012)Google Scholar
  14. 14.
    Harshul, G., Tanupriya, C., Praveen, K.: Comparison between significance of usability and security in HCI. In: 2017 3rd International Conference on Computational Intelligence & Communication Technology (CICT), Ghaziabad, India, pp. 1–4. IEEE (2017)Google Scholar
  15. 15.
    Xu, Z., Qiu, X., He, J.: A novel multimedia human-computer interaction (HCI) system based on kinect and depth image understanding. In: International Conference on Inventive Computation Technologies (ICICT), Coimbatore, India, pp. 1–6. IEEE (2017)Google Scholar
  16. 16.
    Fernandez Montenegro, J., Argyriou, V.: Gaze estimation using EEG signals for HCI in augmented and virtual reality headsets. In: 2016 23rd International Conference on Pattern Recognition (ICPR), Cancun, Mexico. IEEE (2016)Google Scholar
  17. 17.
    El-Shazly, E., Abdelwahab, M., Shimada, A.: Real time algorithm for efficient HCI employing features obtained from MYO sensor. In: 2016 IEEE 59th International Midwest Symposium on Circuits and Systems (MWSCAS), Abu Dhabi, United Arab Emirates, pp. 1–4. IEEE (2016)Google Scholar
  18. 18.
    Itkarkar, R.R., Nandi, A.V.: A survey of 2D and 3D imaging used in hand gesture recognition for human-computer interaction (HCI). In: 2016 IEEE International WIE Conference on Electrical and Computer Engineering (WIECON-ECE), Pune, India, pp. 188–193. IEEE (2016)Google Scholar
  19. 19.
    Zuo, H.: Implementation of HCI software interface based on image identification and segmentation algorithms. In: 2016 Online International Conference on Green Engineering and Technologies (IC-GET), Coimbatore, India, pp. 1–6. IEEE (2016)Google Scholar
  20. 20.
    Gabrielli, L., Bussolotto, M., Squartini, S.: Reducing the latency in live music transmission with the BeagleBoard xM through resampling. In: 2014 6th European Embedded Design in Education and Research Conference (EDERC), Milano, Italy, pp. 302–306. IEEE (2014)Google Scholar
  21. 21.
    Leboeuf-Pasquier, J., Villa, A.G., Burgos, K.H., Carr-Finch, D.: Implementation of an embedded system on a TS7800 board for robot control. In: 2014 International Conference on Electronics, Communications and Computers (CONIELECOMP), Cholula, Mexico, pp. 135–141. IEEE (2014)Google Scholar
  22. 22.
    Toshniwal, K., Conrad, J.M.: A web-based sensor monitoring system on a Linux-based single board computer platform. In: Proceedings of the IEEE SoutheastCon 2010 (SoutheastCon), Concord, NC, USA, pp. 371–374. IEEE (2010)Google Scholar
  23. 23.
    Jaziri, I., Chaarabi, L., Jelassi, K.: A remote DC motor control using embedded Linux and FPGA. In: 2015 7th International Conference on Modelling, Identification and Control (ICMIC), Sousse, Tunisia, pp. 1–5. IEEE (2015)Google Scholar
  24. 24.
    Kang, P., Wei, Y., Wei, Z.: Control system for granary ventilation based on embedded networking and Qt technology. In: 2017 29th Chinese Control and Decision Conference (CCDC), Chongqing, China, pp. 2275–2280. IEEE (2017)Google Scholar
  25. 25.
    Degada, A., Savani, V.: Design and implementation of low cost, portable telemedicine system: an embedded technology and ICT approach. In: 2015 5th Nirma University International Conference on Engineering (NUICONE), Ahmedabad, India, pp. 1–6. IEEE (2015)Google Scholar
  26. 26.
    Stutts, J.C., Wilkins, J.W., Vaugh, B.V.: Why do people have drowsy driving crashes? Input from drivers who just did. AAA Foundation for Traffic Safety, Washington, DC (1999)Google Scholar
  27. 27.
    Verwey, W.B., Zaidel, D.M.: Preventing drowsiness accidents by an alertness maintenance device. Accid. Anal. Prev. 31(3), 199–211 (1999)CrossRefGoogle Scholar
  28. 28.
    Flores, M.J., Armingol, J.M., De la Escalera, A.: Sistema avanzado de asistencia a la conducción para la detección de la somnolencia. Rev. Iberoam. Autom. e Inform. Ind. RIAI 8(3), 216–228 (2011)CrossRefGoogle Scholar
  29. 29.
    Fuletra, J.D., Bosamiya, D.: A survey on driver’s drowsiness detection techniques. Int. J. Recent Innov. Trends Comput. Commun. 1(11), 816–819 (2013)Google Scholar
  30. 30.
    Dinges, D.F., Grace, R.: PERCLOS: a valid psychophysiological measure of alertness as assessed by psychomotor vigilance. US Department of Transportation, Federal Highway Administration, Publication Number FHWA-MCRT-98-006 (1998)Google Scholar
  31. 31.
    Jo, J., Lee, S.J., Jung, H.G., Park, K.R., Kim, J.: Vision-based method for detecting driver drowsiness and distraction in driver monitoring system. Opt. Eng. 50(12), 127202 (2011)CrossRefGoogle Scholar
  32. 32.
    Joyce, G., Lilley, M., Barker, T., Jefferies, A.: Mobile application tutorials: perception of usefulness from an HCI expert perspective. In: International Conference on Human-Computer Interaction, pp. 302–308. Springer International Publishing, Cham (2016)Google Scholar
  33. 33.

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Eddie E. Galarza
    • 1
  • Fabricio D. Egas
    • 1
  • Franklin M. Silva
    • 1
  • Paola M. Velasco
    • 1
  • Eddie D. Galarza
    • 1
  1. 1.Universidad de las Fuerzas Armadas - ESPESangolquíEcuador

Personalised recommendations