Advertisement

Detection of Genetic Aberrations in Cancer Driving Signaling Pathways Based on Joint Analysis of Heterogeneous Genomics Data

  • Roman Jaksik
  • Krzysztof Fujarewicz
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 721)

Abstract

Cancer results from genetic aberrations that affect multiple intracellular processes, combined with evolution and clonal selection that give cancer a significant advantage over heathy cells. Identification of genes and processes that function improperly in cancer cells is a significant challenge, necessary for the proper understanding of cancerogenesis and for the development of successful treatment scenarios. This paper shows the advantages of utilizing data provided by various methods to complement the knowledge about alterations in regulatory processes associated with cancer. Using four different experiment types that focus on mutations and indels, gene expression, copy number variation and methylation, used to study the genome of over 2000 patients treated for breast, thyroid and prostate cancer, we test some of the assumptions used in cancer research associated with coverage and mutual exclusivity of alterations. We show that individual methods do not allow to observe alterations in all cancer related processes and that the exclusivity assumption is valid only for individual alteration types. We additionally show the relationship between the violation of those assumptions and clinical data, at the level of individual patients, providing a comprehensive description of the analysis strategy used and its possible impact on the interpretation of data.

Keywords

Signaling pathways Sequencing Methylation Gene expression Copy-number alteration Mutual exclusivity 

Notes

Acknowledgments

This work was supported by the Polish National Centre for Research and Development grant 2/267398/4/NCBR/2015 and an internal grant of the Silesian University of Technology. Calculations were carried out using the computer cluster Ziemowit (http://www.ziemowit.hpc.polsl.pl) funded by the Silesian BIO-FARMA project No. POIG.02.01.00-00-166/08 in the Computational Biology and Bioinformatics Laboratory of the Biotechnology Centre at the Silesian University of Technology.

References

  1. Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M., Sherlock, G.: Gene ontology: tool for the unification of biology. The gene ontology consortium. Nat. Genet. 25(1), 25–29 (2000).  https://doi.org/10.1038/75556CrossRefGoogle Scholar
  2. Fouad, Y.A., Aanei, C.: Revisiting the hallmarks of cancer. Am. J. Cancer Res. 7(5), 1016–1036 (2017)Google Scholar
  3. Hanahan, D., Weinberg, R.A.: The hallmarks of cancer. Cell 100(1), 57–70 (2000)CrossRefGoogle Scholar
  4. Hanahan, D., Weinberg, R.A.: Hallmarks of cancer: the next generation. Cell 144(5), 646–674 (2011).  https://doi.org/10.1016/j.cell.2011.02.013CrossRefGoogle Scholar
  5. Jacobsen, A., Silber, J., Harinath, G., Huse, J.T., Schultz, N., Sander, C.: Analysis of microRNA-target interactions across diverse cancer types. Nat. Struct. Mol. Biol. 20(11), 1325–1332 (2013).  https://doi.org/10.1038/nsmb.2678CrossRefGoogle Scholar
  6. Kandoth, C., McLellan, M.D., Vandin, F., Ye, K., Niu, B., Lu, C., Ding, L.: Mutational landscape and significance across 12 major cancer types. Nature 502(7471), 333–339 (2013).  https://doi.org/10.1038/nature12634CrossRefGoogle Scholar
  7. Knijnenburg, T.A., Bismeijer, T., Wessels, L.F., Shmulevich, I.: A multilevel pan-cancer map links gene mutations to cancer hallmarks. Chin. J. Cancer 34(10), 439–449 (2015).  https://doi.org/10.1186/s40880-015-0050-6Google Scholar
  8. Kulis, M., Esteller, M.: DNA methylation and cancer. Adv. Genet. 70, 27–56 (2010).  https://doi.org/10.1016/B978-0-12-380866-0.60002-2Google Scholar
  9. McLaren, W., Gil, L., Hunt, S.E., Riat, H.S., Ritchie, G.R., Thormann, A., Cunningham, F.: The ensembl variant effect predictor. Genome Biol. 17(1), 122 (2016).  https://doi.org/10.1186/s13059-016-0974-4CrossRefGoogle Scholar
  10. Schaefer, C.F., Anthony, K., Krupa, S., Buchoff, J., Day, M., Hannay, T., Buetow, K.H.: PID: the pathway interaction database. Nucleic Acids Res. 37(Database issue), D674–D679 (2009).  https://doi.org/10.1093/nar/gkn653CrossRefGoogle Scholar
  11. Shlien, A., Malkin, D.: Copy number variations and cancer. Genome Med. 1(6), 62 (2009).  https://doi.org/10.1186/gm62CrossRefGoogle Scholar
  12. Sonnenschein, C., Soto, A.M.: The aging of the 2000 and 2011 Hallmarks of Cancer reviews: a critique. J. Biosci. 38(3), 651–663 (2013)CrossRefGoogle Scholar
  13. Yeang, C.H., McCormick, F., Levine, A.: Combinatorial patterns of somatic gene mutations in cancer. FASEB J. 22(8), 2605–2622 (2008).  https://doi.org/10.1096/fj.08-108985CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Institute of Automatic ControlSilesian University of TechnologyGliwicePoland

Personalised recommendations