Semi-automatic Determination of Geometrical Properties of Short Natural Fibers in Biocomposites by Digital Image Processing

  • Victoria Mera-Moya
  • Jorge I. Fajardo
  • Iális C. de Paula Junior
  • Leslie Bustamante
  • Luis J. Cruz
  • Thiago Barros
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 721)


The present article proposes a method for the estimation of geometrical properties of short natural fibers that act as reinforcing phase in polymeric composites. The extraction of the image attributes is performed based on the analysis of microscopic images taken in different sections of the material, requiring a minimal user intervention. The proposed method estimates the orientation tensor of the short fibers from geometrical characteristics such as inclination, length, width and aspect ratio, using an elliptical covering on each fiber. The method validation was performed on a polypropylene composite reinforced with 30% by weight of bamboo short fibers (guadua angustifolia species), the accuracy and precision of the proposed method proved to be adequate. The \( a_{11} \) element of the orientation tensor was evaluated and the results agree in 98% with respect to the commercial software. This technique is a fast alternative of low cost in characterization of new materials.


Digital image processing Orientation tensor Composite materials Biomaterials 


  1. 1.
    Zhong, Y., Kureemun, U., Tran, L.Q.N., Lee, H.P.: Natural plant fiber composites-constituent properties and challenges in numerical modeling and simulations. Int. J. Appl. Mechanics 9(4), 1750045 (2017)CrossRefGoogle Scholar
  2. 2.
    Maache, M., Bezazi, A., Amroune, S., Scarpa, F., Dufresne, A.: Characterization of a novel natural cellulosic fiber from Juncus effusus L. Carbohydr. Polym. 171, 163–172 (2017)CrossRefGoogle Scholar
  3. 3.
    Luna, P., Lizarazo-Marriaga, J., Mariño, A.: Guadua angustifolia bamboo fibers as reinforcement of polymeric matrices: an exploratory study. Constr. Build. Mater. 116, 93–97 (2016)CrossRefGoogle Scholar
  4. 4.
    Askeland, D.: Ciencia e Ingeniería de los Materiales, 3rd edn. Thomson, México (1998)Google Scholar
  5. 5.
    Bay, R., Tucker, C.: Fiber orientation in simple injection moldings. Part I: theory and numerical methods. Polym. Compos. 13(4), 317–331 (1992)CrossRefGoogle Scholar
  6. 6.
    Babatunde, A., Jack, D., Montgomery, S.: Effectiveness of recent fiber-interaction diffusion models for orientation and the part stiffness predictions in injection molded short-fiber reinforced composites. Compos. A: Appl. Sci. Manuf. 43(11), 1959–1970 (2012)CrossRefGoogle Scholar
  7. 7.
    Abdennadher, A.: Injection moulding of natural fiber reinforced polypropylene: Process, microestructure and properties. Ecole Nationale Supérieure des Mines de Paris, Francia (2015)Google Scholar
  8. 8.
    Velez-García, G., Mazahir, S., Hofmann, J., Wapperom, P., Baird, D., Zink-Sharp, A., Kunc, V.: Improvement in orientation measurements for short and long fiber injection molded composites. In: Proceedings of the 10th Annual Automotive Composites Conference and Exhibition, Michigan, vol. 10, no. 1, pp. 799–809 (2010)Google Scholar
  9. 9.
    Advani, S., Tucker III, C.: The use of tensors to describe and predict fiber orientation in short fiber composites. J. Rheol. 31(8), 751–784 (1987)CrossRefGoogle Scholar
  10. 10.
    Neves, N., Pontes, A., Pouzada, A.: Fiber contents effect on the fiber orientation injection model GF/PP composite plates. SPE ANTEC (2002)Google Scholar
  11. 11.
    Kim, D., Lee, J.: Measurements of the fiber orientation angle in FRP by intensity method. J. Mater. Process. Technol. 201(1–3), 755–760 (2008)CrossRefGoogle Scholar
  12. 12.
    Thi, T., Morioka, M., Yokoyama, A., Hamanaka, S., Yamashita, K., Nonomura, C.: Measurements of fiber orientation distribution in injection-molded-short-glass-fiber composites using X-ray computed tomography. J. Mater. Process. Technol. 219, 1–9 (2015)CrossRefGoogle Scholar
  13. 13.
    Sun, X., Lasecki, J., Zeng, D., Gan, Y., Su, X., Tao, J.: Measurements and quantitative analysis of fiber orientation distribution in long fiber reinforced part by injection molding. Polym. Test. 42, 168–174 (2015)CrossRefGoogle Scholar
  14. 14.
    Blanc, R., Germain, C., Da Costa, J., Baylou, P., Cataldi, M.: Fiber orientation measurements in composite materials. Compos. A Appl. Sci. Manuf. 37(2), 197–206 (2006)CrossRefGoogle Scholar
  15. 15.
    Jeffery, G.: The motion of ellipsoidal particles immersed in a viscous fluid. In: Proceedings of the Royal Society A, London, vol. 102, no. 715, pp. 167–179 (1923)Google Scholar
  16. 16.
    Dunn, M., Ledbetter, H.: Micromechanically-based acoustic characterization of the fiber orientation distribution function of morphologically textured short-fiber composites: prediction of thermo mechanical and physical properties. Mater. Sci. Eng., A 285(1), 56–61 (2000)CrossRefGoogle Scholar
  17. 17.
    Eberhardt, C., Clarke, A.: Automated reconstruction of curvilinear fibers from 3D datasets acquired by X-ray microtomography. J. Microsc. 2016(1), 41–53 (2002)CrossRefGoogle Scholar
  18. 18.
    Fajardo, J.: Determinación del estado de orientación de fibras cortas, mediante procesamiento digital de imágenes en un compuesto termoplástico polipropileno/bambú modelado por inyección. Dissertación (Maestría en nuevos materiales) – Universidad Pontificia Bolivariana (2015)Google Scholar
  19. 19.
    Fajardo, J., Suarez, G., Cruz, L., Garzón, L., López, L.: Characterization of the state planar orientation for short natural fiber in polymeric composites by means of the tensor orientation. In: 5th International Conference on Advanced Materials and Systems, pp. 43–48 (2014)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Victoria Mera-Moya
    • 1
  • Jorge I. Fajardo
    • 2
  • Iális C. de Paula Junior
    • 1
  • Leslie Bustamante
    • 3
  • Luis J. Cruz
    • 4
  • Thiago Barros
    • 1
  1. 1.Universidade Federal do CearáSobralBrazil
  2. 2.Universidad Politécnica SalesianaCuencaEcuador
  3. 3.Doshisha UniversityKyotoJapan
  4. 4.Universidad Pontificia BolivarianaMedellínColombia

Personalised recommendations