Skip to main content

Analysis of Correspondences Applied to Vehicle Plates Using Descriptors in Visible Spectrum

  • 2524 Accesses

Part of the Advances in Intelligent Systems and Computing book series (AISC,volume 721)

Abstract

Recognition of regions is consolidated as a branch of the computer vision that so far no limitation, new developments are being developed every day methods that allow more or less precision; distinguish points, areas and elements of interest both in photographs as well as video. There are currently several comparative studies which focus on analysis of descriptors on images without regions, so the proposal of this study intended to show a comparative analysis of the methods and algorithms that are more robust with respect to descriptors focused on the detection of license plates, in the end we obtain values of robustness that they compare with studies of correspondence previous ones.

Keywords

  • Descriptors
  • Detectors
  • SIFT
  • SURF
  • ORB
  • BRISK
  • BRIEF
  • FAST
  • AST
  • MSER
  • FREAK

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-73450-7_17
  • Chapter length: 8 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   369.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-73450-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   469.00
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

References

  1. Lowe, D.G.: Object recognition from local scale-invariant features. In: The Proceedings of the Seventh IEEE International Conference on Computer Vision, vol. 2. IEEE (1999)

    Google Scholar 

  2. Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide baseline stereo from maximally stable extremal regions. In: Proceedings of British Machine Vision Conference, pp. 384–396 (2002)

    Google Scholar 

  3. Rosten, E., Drummond, T.: Machine learning for high-speed corner detection. In: Proceedings of European Conference on Computer Vision, pp. 430–443 (2006)

    Google Scholar 

  4. Bay, H., Tuytelaars, T., Van Gool, L.: SURF: Speeded Up Robust Features. Comput. Vis. Image Underst. (CVIU) 110(3), 346–359 (2008)

    CrossRef  Google Scholar 

  5. Agrawal, M., Konolige, K., Blas, M.: CenSurE: center surround extremas for realtime feature detection and matching. In: Proceedings of European Conference on Computer Vision, pp. 102–115 (2008)

    Google Scholar 

  6. Calonder, M., Lepetit, V., Strecha, C., Fua, P.: BRIEF: binary robust independent elementary features. In: Proceedings of the European Conference on Computer Vision, pp. 778–792 (2010)

    Google Scholar 

  7. Leutenegger, S., Chli, M., Siegwart, R.: BRISK: Binary Robust Invariant Scalable Keypoints. In: Proceedings of IEEE International Conference on Computer Vision, pp. 2548–2555 (2011)

    Google Scholar 

  8. Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: ORB: an efficient alternative to SIFT or SURF. In: Proceedings of IEEE International Conference on Computer Vision, pp. 2564–2571 (2011)

    Google Scholar 

  9. Alahi, A., Ortiz, R., Vandergheynst, P.: Freak: fast retina keypoint. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 510–517 (2012)

    Google Scholar 

  10. Mukherjee, D., Jonathan, Q.M., Wang, W., Wang, G.: A comparative experimental study of image feature detectors and descriptors. Mach. Vis. Appl. 26(4), 443–466 (2015)

    CrossRef  Google Scholar 

  11. Ricaurte, P., Chilán, C., Aguilera-Carrasco, C.A., Vintimilla, B.X., Sappa, A.D.: Feature point descriptors: infrared and visible spectra. Sensors (Switzerland) 14(2), 3690–3701 (2014)

    CrossRef  Google Scholar 

  12. Ricaurte, P., Chilán, C.: Correspondencia de características utilizando esquemas clásicos en el espectro visible (2012)

    Google Scholar 

  13. Kryachko, A.A., Timofeev, B.S., Motyko, A.A.: The Algorithm for Cars License Plates Segmentation 2 Physical Aspects of the License Plate Recognition Systems, pp. 577–590

    Google Scholar 

  14. Thome, N., Vacavant, A., Robinault, L., Miguet, S.: A cognitive and video-based approach for multinational license plate recognition. Mach. Vis. Appl. 22(2), 389–407 (2011)

    CrossRef  Google Scholar 

  15. Gu, Q., Yang, J., Kong, L., Cui, G.: Multi-scaled license plate detection based on the label-moveable maximal MSER clique. Opt. Rev. 22(4), 669–678 (2015)

    CrossRef  Google Scholar 

  16. Prates, R.C., Schwartz, W.R., Menotti, D.: An Adaptive Vehicle License Plate Detection at Higher Matching Degree, pp. 1–8 (2014)

    Google Scholar 

  17. Pan, Q., Shen, J., Yang, W., Sun, C.: Ensemble Haar and MB-LBP features for license plate detection. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 7751, pp. 223–230 (2013)

    Google Scholar 

  18. Borghese, N.A., Lanzi, P.L., Mainetti, R., Pirovano, M., Surer, E.: Advances in neural networks: computational and theoretical issues. Smart Innov. Syst. Technol. 37, 243–251 (2015)

    CrossRef  Google Scholar 

  19. Huang, W., Qiao, Y., Tang, X.: Robust scene text detection with convolution neural network induced MSER trees. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 8692, no. Part 4, pp. 497–511(2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shendry Rosero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Rosero, S., Jimenez, A. (2018). Analysis of Correspondences Applied to Vehicle Plates Using Descriptors in Visible Spectrum. In: Rocha, Á., Guarda, T. (eds) Proceedings of the International Conference on Information Technology & Systems (ICITS 2018). ICITS 2018. Advances in Intelligent Systems and Computing, vol 721. Springer, Cham. https://doi.org/10.1007/978-3-319-73450-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-73450-7_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-73449-1

  • Online ISBN: 978-3-319-73450-7

  • eBook Packages: EngineeringEngineering (R0)