Advertisement

Analysis of Correspondences Applied to Vehicle Plates Using Descriptors in Visible Spectrum

  • Shendry Rosero
  • Alberto Jimenez
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 721)

Abstract

Recognition of regions is consolidated as a branch of the computer vision that so far no limitation, new developments are being developed every day methods that allow more or less precision; distinguish points, areas and elements of interest both in photographs as well as video. There are currently several comparative studies which focus on analysis of descriptors on images without regions, so the proposal of this study intended to show a comparative analysis of the methods and algorithms that are more robust with respect to descriptors focused on the detection of license plates, in the end we obtain values of robustness that they compare with studies of correspondence previous ones.

Keywords

Descriptors Detectors SIFT SURF ORB BRISK BRIEF FAST AST MSER FREAK 

References

  1. 1.
    Lowe, D.G.: Object recognition from local scale-invariant features. In: The Proceedings of the Seventh IEEE International Conference on Computer Vision, vol. 2. IEEE (1999)Google Scholar
  2. 2.
    Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide baseline stereo from maximally stable extremal regions. In: Proceedings of British Machine Vision Conference, pp. 384–396 (2002)Google Scholar
  3. 3.
    Rosten, E., Drummond, T.: Machine learning for high-speed corner detection. In: Proceedings of European Conference on Computer Vision, pp. 430–443 (2006)Google Scholar
  4. 4.
    Bay, H., Tuytelaars, T., Van Gool, L.: SURF: Speeded Up Robust Features. Comput. Vis. Image Underst. (CVIU) 110(3), 346–359 (2008)CrossRefGoogle Scholar
  5. 5.
    Agrawal, M., Konolige, K., Blas, M.: CenSurE: center surround extremas for realtime feature detection and matching. In: Proceedings of European Conference on Computer Vision, pp. 102–115 (2008)Google Scholar
  6. 6.
    Calonder, M., Lepetit, V., Strecha, C., Fua, P.: BRIEF: binary robust independent elementary features. In: Proceedings of the European Conference on Computer Vision, pp. 778–792 (2010)Google Scholar
  7. 7.
    Leutenegger, S., Chli, M., Siegwart, R.: BRISK: Binary Robust Invariant Scalable Keypoints. In: Proceedings of IEEE International Conference on Computer Vision, pp. 2548–2555 (2011)Google Scholar
  8. 8.
    Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: ORB: an efficient alternative to SIFT or SURF. In: Proceedings of IEEE International Conference on Computer Vision, pp. 2564–2571 (2011)Google Scholar
  9. 9.
    Alahi, A., Ortiz, R., Vandergheynst, P.: Freak: fast retina keypoint. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 510–517 (2012) Google Scholar
  10. 10.
    Mukherjee, D., Jonathan, Q.M., Wang, W., Wang, G.: A comparative experimental study of image feature detectors and descriptors. Mach. Vis. Appl. 26(4), 443–466 (2015)CrossRefGoogle Scholar
  11. 11.
    Ricaurte, P., Chilán, C., Aguilera-Carrasco, C.A., Vintimilla, B.X., Sappa, A.D.: Feature point descriptors: infrared and visible spectra. Sensors (Switzerland) 14(2), 3690–3701 (2014)CrossRefGoogle Scholar
  12. 12.
    Ricaurte, P., Chilán, C.: Correspondencia de características utilizando esquemas clásicos en el espectro visible (2012) Google Scholar
  13. 13.
    Kryachko, A.A., Timofeev, B.S., Motyko, A.A.: The Algorithm for Cars License Plates Segmentation 2 Physical Aspects of the License Plate Recognition Systems, pp. 577–590Google Scholar
  14. 14.
    Thome, N., Vacavant, A., Robinault, L., Miguet, S.: A cognitive and video-based approach for multinational license plate recognition. Mach. Vis. Appl. 22(2), 389–407 (2011)CrossRefGoogle Scholar
  15. 15.
    Gu, Q., Yang, J., Kong, L., Cui, G.: Multi-scaled license plate detection based on the label-moveable maximal MSER clique. Opt. Rev. 22(4), 669–678 (2015)CrossRefGoogle Scholar
  16. 16.
    Prates, R.C., Schwartz, W.R., Menotti, D.: An Adaptive Vehicle License Plate Detection at Higher Matching Degree, pp. 1–8 (2014)Google Scholar
  17. 17.
    Pan, Q., Shen, J., Yang, W., Sun, C.: Ensemble Haar and MB-LBP features for license plate detection. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 7751, pp. 223–230 (2013)Google Scholar
  18. 18.
    Borghese, N.A., Lanzi, P.L., Mainetti, R., Pirovano, M., Surer, E.: Advances in neural networks: computational and theoretical issues. Smart Innov. Syst. Technol. 37, 243–251 (2015)CrossRefGoogle Scholar
  19. 19.
    Huang, W., Qiao, Y., Tang, X.: Robust scene text detection with convolution neural network induced MSER trees. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 8692, no. Part 4, pp. 497–511(2014) Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Escuela Superior Politécnica del LitoralGuayaquilEcuador

Personalised recommendations