An Algebraic Multigrid Method for an Adaptive Space–Time Finite Element Discretization

  • Olaf SteinbachEmail author
  • Huidong Yang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10665)


This work is devoted to numerical studies on an algebraic multigrid preconditioned GMRES method for solving the linear algebraic equations arising from a space–time finite element discretization of the heat equation using h–adaptivity on tetrahedral meshes. The finite element discretization is based on a Galerkin–Petrov variational formulation using piecewise linear finite elements simultaneously in space and time. In this work, we focus on h–adaptivity relying on a residual based a posteriori error estimation, and study some important components in the algebraic multigrid method for solving the space–time finite element equations.


Adaptive space–time finite element Algebraic multigrid 



This work has been supported by the Austrian Science Fund (FWF) under the Grant SFB Mathematical Optimisation and Applications in Biomedical Sciences.


  1. 1.
    Andreev, R.: Wavelet-in-time multigrid-in-space preconditioning of parabolic evolution equations. SIAM J. Sci. Comput. 38(1), A216–A242 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Arnold, D.N., Mukherjee, A., Pouly, L.: Locally adapted tetrahedral meshes using bisection. SIAM J. Sci. Comput. 22(2), 431–448 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bank, R.E., Vassilevski, P.S., Zikatanov, L.T.: Arbitrary dimension convection-diffusion schemes for space-time discretizations. J. Comput. Appl. Math. 310, 19–31 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bey, J.: Tetrahedral grid refinement. Computing 55(4), 355–378 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Briggs, W.L., Henson, V.E., McCormick, S.F.: A multigrid tutorial. SIAM, Philadelphia (2000)CrossRefzbMATHGoogle Scholar
  6. 6.
    Dörfler, W.: A convergent adaptive algorithm for Poisson’s equation. SIAM J. Numer. Anal. 33(3), 1106–1124 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Ellis, T.E.: Space-time discontinuous Petrov-Galerkin finite elements for transient fluid mechanics. Ph.D. thesis. University of Texas at Austin (2016)Google Scholar
  8. 8.
    Ellis, T.E., Demkowicz, L., Chan, J.: Locally conservative discontinuous Petrov-Galerkin finite elements for fluid problems. Comput. Math. Appl. 68(11), 1530–1549 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Eriksson, K., Johnson, C.: Adaptive finite element methods for parabolic problems I: a linear model problem. SIAM J. Numer. Anal. 28(1), 43–77 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Gander, M.J., Neumüller, M.: Analysis of a new space-time parallel multigrid algorithm for parabolic problems. SIAM J. Sci. Comput. 38(4), A2173–A2208 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Hughes, T.J.R., Hulbert, G.M.: Space-time finite element methods for elastodynamics: formulations and error estimates. Comput. Methods Appl. Math. 66(3), 339–363 (1988)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Langer, U., Moore, S.E., Neumüller, M.: Space-time isogeometric analysis of parabolic evolution problems. Comput. Methods Appl. Math. 306, 342–363 (2016)MathSciNetGoogle Scholar
  13. 13.
    MacLachlan, S., Saad, Y.: A greedy strategy for coarse-grid selection. SIAM J. Sci. Comput. 29(5), 1825–1853 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Moore, P.K.: A posteriori error estimation with finite element semi-and fully discrete methods for nonlinear parabolic equations in one space dimension. SIAM J. Numer. Anal. 31(1), 149–169 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Neumüller, M.: Space-time methods: fast solvers and applications. Ph.D. thesis. TU Graz (2013)Google Scholar
  16. 16.
    Neumüller, M., Steinbach, O.: Refinement of flexible space-time finite element meshes and discontinuous Galerkin methods. Comput. Vis. Sci. 14, 189–205 (2011)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Popa, C.: Algebraic multigrid smoothing property of Kaczmarz’s relaxation for general rectangular linear systems. Electron. Trans. Numer. Anal. 29, 150–162 (2007)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Schmich, M., Vexler, B.: Adaptivity with dynamic meshes for space-time finite element discretizations of parabolic equations. SIAM J. Sci. Comput. 30(1), 369–393 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Schwab, C., Stevenson, R.: Space-time adaptive wavelet methods for parabolic evolution problems. Math. Comput. 78(267), 1293–1318 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Steinbach, O.: Space-time finite element methods for parabolic problems. Comput. Methods Appl. Math. 15, 551–566 (2015)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Steinbach, O., Yang, H.: An adaptive space-time finite element method for solving the heat equation, Technical report. TU Graz (2017, in preparation)Google Scholar
  22. 22.
    Urban, K., Patera, A.T.: An improved error bound for reduced basis approximation of linear parabolic problems. Math. Comput. 83(288), 1599–1615 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Verfürth, R.: A Posteriori Error Estimation Techniques for Finite Element Methods. Oxford Unversity Press, Oxford (2013)CrossRefzbMATHGoogle Scholar
  24. 24.
    Zhang, S.: Multi-level iterative techniques. Ph.D. thesis. Penn State University (1988)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Institut für Numerische MathematikTechnische Universität GrazGrazAustria

Personalised recommendations