Monte Carlo Algorithms for Problems with Partially Reflecting Boundaries

  • Nikolai A. SimonovEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10665)


We consider diffusion problems with partially reflecting boundaries that can be formulated in terms of an elliptic equation. To solve boundary value problems with the Robin condition, we propose a Monte Carlo method based on a randomization of an integral representation. The algorithm behaviour is analysed in its application for solving a model problem.


Monte Carlo Random walk Partially reflecting boundary condition Laplace equation Markov chain Robin problem Third boundary value problem 



This work was supported by the Bulgarian Science Fund Grant DFNI-I02/8.


  1. 1.
    Müller, M.E.: Some continuous Monte Carlo methods for the Dirichlet problem. Ann. Math. Stat. 27(3), 569–589 (1956)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Elepov, B.S., Kronberg, A.A., Mikhailov, G.A., Sabelfeld, K.K.: Solution of Boundary Value Problems by the Monte Carlo Method. Nauka, Novosibirsk (1980). (in Russian)Google Scholar
  3. 3.
    Sabelfeld, K.K.: Monte Carlo Methods in Boundary Value Problems. Springer, Berlin/Heidelberg/New York (1991)Google Scholar
  4. 4.
    Ermakov, S.M., Nekrutkin, V.V., Sipin, A.S.: Random Processes for Classical Equations of Mathematical Physics. Kluwer Academic Publishers, Dodrecht (1989)CrossRefzbMATHGoogle Scholar
  5. 5.
    Kac, M.: On some connection between probability theory and differential and integral equations. In: Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, University of California Press, pp. 189–215 (1951)Google Scholar
  6. 6.
    Freidlin, M.: Functional Integration and Partial Differential Equations. Princeton University Press, Princeton (1985)zbMATHGoogle Scholar
  7. 7.
    Hahn, D.W., Ozisik, M.N.: Heat Conduction, 3rd edn. Wiley, Hoboken (2012)CrossRefGoogle Scholar
  8. 8.
    Sabelfeld, K.K., Simonov, N.A.: Random Walks on Boundary for Solving PDEs. VSP, Utrecht (1994)CrossRefzbMATHGoogle Scholar
  9. 9.
    Sabelfeld, K.K., Simonov, N.A.: Stochastic Methods for Boundary Value Problems: Numerics for High-Dimensional PDEs and Applications. De Gruyter, Berlin/Boston (2016)CrossRefzbMATHGoogle Scholar
  10. 10.
    Haji-Sheikh, A., Sparrow, E.M.: The floating random walk and its application to Monte Carlo solutions of heat equations. SIAM J. Appl. Math. 14(2), 570–589 (1966)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Makarov, R.N.: Monte Carlo methods for solving boundary value problems of second and third kinds. Russ. J. Numer. Anal. Math. Model. 13(2), 117–132 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Sipin, A.S.: On stochastic algorithms for solving boundary value problems for the Laplace operator. Trans. POMI Sci. Semin. 442, 133–142 (2015). (in Russian)MathSciNetGoogle Scholar
  13. 13.
    Simonov, N.A.: Monte Carlo methods for solving elliptic equations with boundary conditions containing the normal derivative. Doklady Math. 74, 656–659 (2006)CrossRefzbMATHGoogle Scholar
  14. 14.
    Simonov, N.A.: Random walk on spheres algorithms for solving mixed and Neumann boundary value problems. Siberian J. Numer. Math. 10(2), 209–220 (2007). (in Russian)zbMATHGoogle Scholar
  15. 15.
    Simonov, N.A.: Walk-on-spheres algorithm for solving third boundary value problem. Appl. Math. Lett. 64, 156–161 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Miranda, C.: Partial Differential Equations of Elliptic Type. Springer, Berlin/Heidelberg/New York (1970). CrossRefzbMATHGoogle Scholar
  17. 17.
    Helms, L.L.: Introduction to Potential Theory. Wiley-Interscience, New York (1969)zbMATHGoogle Scholar
  18. 18.
    Günter, N.M.: La theorie du potentiel et ses applications aux problemes fondamentaux de la physique mathematique. Gauthier-Villars, Paris (1934)Google Scholar
  19. 19.
    Spanier, J., Gelbard, E.M.: Monte Carlo Principles and Neutron Transport Problems. Addison-Wesley Publishing Company, Boston (1969)zbMATHGoogle Scholar
  20. 20.
    Ermakov, S.M., Mikhailov, G.A.: Statistical Simulation. Nauka, Moscow (1982). (in Russian)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Institute of Computational Mathematics and Mathematical Geophysics SB RASNovosibirskRussian Federation

Personalised recommendations