Towards a Scalable Multifidelity Simulation Approach for Electrokinetic Problems at the Mesoscale

  • Brian D. Hong
  • Mauro Perego
  • Pavel Bochev
  • Amalie L. Frischknecht
  • Edward G. Phillips
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10665)


In this work we present a computational capability featuring a hierarchy of models with different fidelities for the solution of electrokinetics problems at the micro-/nano-scale. A multifidelity approach allows the selection of the most appropriate model, in terms of accuracy and computational cost, for the particular application at hand. We demonstrate the proposed multifidelity approach by studying the mobility of a colloid in a micro-channel as a function of the colloid charge and of the size of the ions dissolved in the fluid.


Multifidelity modeling Electrokinetics Colloid mobility 



This work was supported by the U.S. Department of Energy Office of Science as part of the Collaboratory on Mathematics for Mesoscopic Modeling of Materials (CM4), under Award Number DE-SC0009247. The work of B. Hong was performed during a Computer Science Research Institute (CSRI) summer internship at Sandia National Laboratories.


  1. 1.
    Borukhov, I., Andelman, D., Orland, H.: Adsorption of large ions from an electrolyte solution: a modified Poisson-Boltzmann equation. Electrochimica Acta 46, 221–229 (2000)CrossRefGoogle Scholar
  2. 2.
    Evans, R.: The nature of the liquid-vapour interface and other topics in the statistical mechanics of nonuniform, classical fluids. Adv. Phys. 28(2), 143–200 (1979)CrossRefGoogle Scholar
  3. 3.
    Hainan, W., Thiele, A., Pilon, L.: Simulations of cyclic voltammetry for electric double layers in asymmetric electrolytes: a generalized modified Poisson-Nernst-Planck model. J. Phys. Chem. C 117(36), 18286–18297 (2013)CrossRefGoogle Scholar
  4. 4.
    Heroux, M., Bartlett, R., Hoekstra, V.H.R., Hu, J., Kolda, T., Lehoucq, R., Long, K., Pawlowski, R., Phipps, E., Salinger, A., Thornquist, H., Tuminaro, R., Willenbring, J., Williams, A.: An overview of trilinos, Technical report SAND2003-2927, Sandia National Laboratories (2003)Google Scholar
  5. 5.
    Hong, B.D., Perego, M.: A comparative study of simplified models for ion crowding and correlation effects in electrolyte solutions. In: Carleton, J.B., Parks, M.L. (eds.) Center for Computing Research Summer Proceedings 2016, Technical report SAND2017-1294R, Sandia National Laboratories, pp. 191–200 (2016)Google Scholar
  6. 6.
    Hsu, J.-P., Yeh, L.-H., Ku, M.-H.: Evaluation of the electric force in electrophoresis. J. Colloid Interface Sci. 305, 324–329 (2007)CrossRefGoogle Scholar
  7. 7.
    Tezduyar, T.E.: Stabilized finite element formulations for incompressible flow computations. Adv. Appl. Mech. 28, 1–44 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Kornyshev, A.A.: Double-layer in ionic liquids: paradigm change? J. Phys. Chem. B 111, 5545–5557 (2007)CrossRefGoogle Scholar
  9. 9.
    Lin, P.T., Shadid, J.N., Tuminaro, R.S., Sala, M., Hennigan, G.L., Pawlowski, R.P.: A parallel fully coupled algebraic multilevel preconditioner applied to multiphysics PDE applications: drift-diffusion, flow/transport/reaction, resistive MHD. Int. J. Numer. Meth. Fluids 64(10–12), 1148–1179 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Roth, R., Evans, R., Lang, A., Kahl, G.: Fundamental measure theory for hard-sphere mixtures revisited: the white bear version. J. Phys.: Condens. Matter 14, 12063 (2002)Google Scholar
  11. 11.
    Shepherd, J., et al.: Cubit Mesh Generation Toolkit, SAND2000-2647. Sandia National Laboratories, Albuquerque (2000)Google Scholar
  12. 12.
    Wu, J.: Density functional theory for chemical engineering: from capillarity to soft materials. AIChE J. 52, 1169–1193 (2006)CrossRefGoogle Scholar

Copyright information

© US Government (outside the US) 2018

Authors and Affiliations

  • Brian D. Hong
    • 1
  • Mauro Perego
    • 2
  • Pavel Bochev
    • 2
  • Amalie L. Frischknecht
    • 2
  • Edward G. Phillips
    • 2
  1. 1.University of ArizonaTucsonUSA
  2. 2.Sandia National LaboratoriesAlbuquerqueUSA

Personalised recommendations